Automated multifocus pollen detection using deep learning

被引:2
作者
Gallardo, Ramon [1 ]
Garcia-Orellana, Carlos J. [1 ]
Gonzalez-Velasco, Horacio M. [1 ]
Garcia-Manso, Antonio [1 ]
Tormo-Molina, Rafael [2 ]
Macias-Macias, Miguel [1 ]
Abengozar, Eugenio [2 ]
机构
[1] Univ Extremadura, Inst Comp Cient Avanzada, Ave Elvas S-N, Badajoz 06006, Spain
[2] Univ Extremadura, Fac Ciencias, Ave Elvas S-N, Badajoz 06006, Spain
关键词
Bright-field microscopy; Pollen recognition; Deep learning; Multifocus microscopy; Airborne pollen;
D O I
10.1007/s11042-024-18450-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pollen-induced allergies affect a significant part of the population in developed countries. Current palynological analysis in Europe is a slow and laborious process which provides pollen information in a weekly-cycle basis. In this paper, we describe a system that allows to locate and classify, in a single step, the pollen grains present in standard glass microscope slides. Besides, processing the samples in the z-axis allows us to increase the probability of detecting grains compared to solutions based on one image per sample. Our system has been trained to recognise 11 pollen types, achieving 97.6 % success rate locating grains, of which 96.3 % are also correctly identified (0.956 macro-F1 score), and with a 2.4 % grains lost. Our results indicate that deep learning provides a robust framework to address automated identification of various pollen types, facilitating their daily measurement.
引用
收藏
页码:72097 / 72112
页数:16
相关论文
共 37 条
  • [1] Classification of Pollen Grain Images Based on an Ensemble of Classifiers
    Arias, David Gutierrez
    Mussel Cirne, Marcos Vinicius
    Chire Saire, Josimar Edinson
    Pedrini, Helio
    [J]. 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 234 - 240
  • [2] POLLEN73S: An image dataset for pollen grains classification
    Astolfi, Gilberto
    Goncalves, Ariadne Barbosa
    Menezes, Geazy Vilharva
    Brito Borges, Felipe Silveira
    Melo Nunes Astolfi, Angelica Christina
    Matsubara, Edson Takashi
    Alvarez, Marco
    Pistori, Hemerson
    [J]. ECOLOGICAL INFORMATICS, 2020, 60
  • [3] Battiato S, 2020, IEEE IMAGE PROC, P2456, DOI 10.1109/ICIP40778.2020.9190776
  • [4] Chudyk C., 2015, LWA 2015 WORKSH KDML, V1458, P65
  • [5] Allergenic pollen and pollen allergy in Europe
    D'Amato, G.
    Cecchi, L.
    Bonini, S.
    Nunes, C.
    Annesi-Maesano, I.
    Behrendt, H.
    Liccardi, G.
    Popov, T.
    van Cauwenberge, P.
    [J]. ALLERGY, 2007, 62 (09) : 976 - 990
  • [6] Daood A., 2018, P 31 INT FLOR ART IN, P8
  • [7] Localisation of Pollen Grains in Digitised Real Daily Airborne Samples
    Diaz-Lopez, Estela
    Rincon, M.
    Rojo, J.
    Vaquero, C.
    Rapp, A.
    Salmeron-Majadas, S.
    Perez-Badia, R.
    [J]. ARTIFICIAL COMPUTATION IN BIOLOGY AND MEDICINE, PT I (IWINAC 2015), 2015, 9107 : 348 - 357
  • [8] Duller A., 1999, Quat Newsl, V89, P4
  • [9] The PASCAL Visual Object Classes Challenge: A Retrospective
    Everingham, Mark
    Eslami, S. M. Ali
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) : 98 - 136
  • [10] Precise Pollen Grain Detection in Bright Field Microscopy Using Deep Learning Techniques
    Gallardo-Caballero, Ramon
    Garcia-Orellana, Carlos J.
    Garcia-Manso, Antonio
    Gonzalez-Velasco, Horacio M.
    Tormo-Molina, Rafael
    Macias-Macias, Miguel
    [J]. SENSORS, 2019, 19 (16)