Recent Advances in Hybrid Seawater Electrolysis for Hydrogen Production

被引:47
|
作者
Yu, Zhipeng [1 ,2 ]
Liu, Lifeng [1 ,2 ]
机构
[1] Songshan Lake Mat Lab, Frontier Res Ctr, Dongguan 523808, Peoples R China
[2] Int Iberian Nanotechnol Lab INL, Clean Energy Cluster, Ave Mestre Jose Veiga, P-4715330 Braga, Portugal
关键词
anodic oxidation reaction; energy-saving hydrogen production; hybrid electrolysis; redox mediator; seawater electrolysis; FUEL-CELLS; OXYGEN EVOLUTION; WATER; ENERGY; ELECTROCATALYSTS; GENERATION; UREA; CHALLENGES; OPPORTUNITIES; ELECTRODES;
D O I
10.1002/adma.202308647
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Seawater electrolysis (SWE) is a promising and potentially cost-effective approach to hydrogen production, considering that seawater is vastly abundant and SWE is able to combine with offshore renewables producing green hydrogen. However, SWE has long been suffering from technical challenges including the high energy demand and interference of chlorine chemistry, leading electrolyzers to a low efficiency and short lifespan. In this context, hybrid SWE, operated by replacing the energy-demanding oxygen evolution reaction and interfering chlorine evolution reaction (CER) with a thermodynamically more favorable anodic oxidation reaction (AOR) or by designing innovative electrolyzer cells, has recently emerged as a better alternative, which not only allows SWE to occur in a safe and energy-saving manner without the notorious CER, but also enables co-production of value-added chemicals or elimination of environmental pollutants. This review provides a first account of recent advances in hybrid SWE for hydrogen production. The substitutional AOR of various small molecules or redox mediators, in couple with hydrogen evolution from seawater, is comprehensively summarized. Moreover, how the electrolyzer cell design helps in hybrid SWE is briefly discussed. Last, the current challenges and future outlook about the development of the hybrid SWE technology are outlined. Hybrid seawater electrolysis, enabled by the anodic oxidation reaction of small molecules or redox mediators substituting for the energy-demanding oxygen evolution reaction, holds substantial promise for energy-saving and cost-effective hydrogen production from seawater without the notorious interfering chlorine evolution, and meanwhile enables either co-production of value-added chemicals or environmental remediation.image
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Challenges and progress in oxygen evolution reaction catalyst development for seawater electrolysis for hydrogen production
    Corbin, Jack
    Jones, Mikey
    Lyu, Cheng
    Loh, Adeline
    Zhang, Zhenyu
    Zhu, Yanqui
    Li, Xiaohong
    RSC ADVANCES, 2024, 14 (09) : 6416 - 6442
  • [22] Efficiency and stability of hydrogen production from seawater using solid oxide electrolysis cells
    Liu, Zhao
    Han, Beibei
    Lu, Zhiyi
    Guan, Wanbing
    Li, Yuanyuan
    Song, Changjiang
    Chen, Liang
    Singhal, Subhash C.
    APPLIED ENERGY, 2021, 300
  • [23] Recent advances in anode catalysts for waste valorization through hybrid water electrolysis: Towards sustainability beyond hydrogen production
    Wang, Yufang
    Lu, Shaoqing
    Yang, Mingke
    Zhang, Zhihao
    Zhang, Jing
    MATERIALS TODAY SUSTAINABILITY, 2024, 25
  • [24] Recent advances on electrocatalytic and photocatalytic seawater splitting for hydrogen evolution
    Yao, Yuan
    Gao, Xinyu
    Meng, Xiangchao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (13) : 9087 - 9100
  • [25] Electrocatalytic seawater splitting for hydrogen production: Recent progress and future prospects
    Feng, Changrui
    Chen, Meng
    Yang, Ziyuan
    Xie, Zhengkun
    Li, Xiumin
    Li, Shasha
    Abudula, Abuliti
    Guan, Guoqing
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 162 : 203 - 226
  • [26] Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea
    d'Amore-Domenech, Rafael
    Santiago, Oscar
    Leo, Teresa J.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 133
  • [27] Recent advances in electrocatalysts for seawater splitting
    Liu, Guangbo
    Xu, Yingshuang
    Yang, Teng
    Jiang, Luhua
    NANO MATERIALS SCIENCE, 2023, 5 (01) : 101 - 116
  • [28] Energy-saving seawater electrolysis for hydrogen production
    Kato, Zenta
    Izumiya, Koichi
    Kumagai, Naokazu
    Hashimoto, Koji
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2009, 13 (02) : 219 - 224
  • [29] Solar hydrogen production from seawater vapor electrolysis
    Kumari, Sudesh
    White, R. Turner
    Kumar, Bijandra
    Spurgeon, Joshua M.
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) : 1725 - 1733
  • [30] Research progress of chlorine corrosion resistance in seawater electrolysis: Materials and technologies
    Yang, Li-Juan
    Guan, Hao-Yue
    Yuan, Shuo
    Sun, Tao
    Jiang, An-Ning
    Feng, Ji-Jun
    CHEMICAL ENGINEERING JOURNAL, 2025, 503