An optimal control problem for the continuity equation arising in smart charging

被引:0
作者
Seguret, Adrien [1 ,2 ]
机构
[1] PSL Res Univ, Univ Paris Dauphine, CEREMADE, Pl Lattre Tassigny, F-75016 Paris, France
[2] OSIRIS Dept, EDF Lab, Bd Gaspard Monge, F-91120 Palaiseau, France
关键词
Optimal control; Optimality conditions; Mean field control; MEAN-FIELD GAMES; DENSITY CONSTRAINTS; CONVEX DUALITY; REGULARITY; 1ST-ORDER; PRESSURE; SYSTEMS;
D O I
10.1016/j.jmaa.2023.127891
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is focused on the mathematical modeling and solution of the optimal charging of a large population of identical plug-in electric vehicles (PEVs) with mixed state variables (continuous and discrete). A mean field assumption is formulated to describe the evolution interaction of the PEVs population. The optimal control of the resulting continuity equation of the mixed system under state constraints is investigated. We prove the existence of a minimizer. We then characterize the solution as the weak solution of a system of two coupled PDEs: a continuity equation and of a Hamilton-Jacobi equation. We provide regularity results of the optimal feedback control.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:38
相关论文
共 59 条
  • [41] Large-population cost-coupled LQG problems with nonuniform agents:: Individual-mass behavior and decentralized ε-Nash equilibria
    Huang, Minyi
    Caines, Peter E.
    Malhame, Roland P.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (09) : 1560 - 1571
  • [42] Mean field games. I - The stationary case.
    Lasry, Jean-Michel
    Lions, Pierre-Louis
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 343 (09) : 619 - 625
  • [43] Mean field games
    Lasry, Jean-Michel
    Lions, Pierre-Louis
    [J]. JAPANESE JOURNAL OF MATHEMATICS, 2007, 2 (01): : 229 - 260
  • [44] Mean field games. II - Finite horizon and optimal control.
    Lasry, Jean-Michel
    Lions, Pierre-Louis
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 343 (10) : 679 - 684
  • [45] New estimates on the regularity of the pressure in density-constrained mean field games
    Lavenant, Hugo
    Santambrogio, Filippo
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 100 (02): : 644 - 667
  • [46] Le Floch C, 2015, P AMER CONTR CONF, P3285, DOI 10.1109/ACC.2015.7171839
  • [47] Lions P.-L., 2007, Theorie des jeux de champ moyen et applications (mean field games)
  • [48] Short time solution to the master equation of a first order mean field game
    Mayorga, Sergio
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (10) : 6251 - 6318
  • [49] A variational approach to second order mean field games with density constraints: The stationary case
    Meszaros, Alpar Richard
    Silva, Francisco J.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (06): : 1135 - 1159
  • [50] Envelope theorems for arbitrary choice sets
    Milgrom, P
    Segal, I
    [J]. ECONOMETRICA, 2002, 70 (02) : 583 - 601