Intermediate modular curves with infinitely many cubic points over Q

被引:0
作者
Dalal, Tarun [1 ]
机构
[1] Shanghai Tech Univ, Inst Math Sci, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
关键词
Modular curve; intermediate; cubic point; ELLIPTIC-CURVES; TORSION;
D O I
10.1142/S1793042124500350
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we determine all intermediate modular curves X-Delta(N) that admit infinitely many cubic points over the rational field Q.
引用
收藏
页码:701 / 713
页数:13
相关论文
共 50 条
  • [41] Solving Fermat-type equations via modular Q-curves over polyquadratic fields
    Dieulefait, Luis
    Jimenez Urroz, Jorge
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 633 : 183 - 195
  • [42] Exponential sums over points of elliptic curves
    Ahmadi, Omran
    Shparlinski, Igor E.
    JOURNAL OF NUMBER THEORY, 2014, 140 : 299 - 313
  • [43] Q-curves over odd degree number fields
    Cremona, J. E.
    Najman, Filip
    RESEARCH IN NUMBER THEORY, 2021, 7 (04)
  • [44] Non-CM elliptic curves with infinitely many almost prime Frobenius traces
    Cojocaru, Alina Carmen
    Meyer, McKinley
    JOURNAL OF NUMBER THEORY, 2023, 252 : 74 - 117
  • [45] FAMILIES OF ELLIPTIC CURVES OVER CYCLIC CUBIC NUMBER FIELDS WITH PRESCRIBED TORSION
    Jeon, Daeyeol
    MATHEMATICS OF COMPUTATION, 2016, 85 (299) : 1485 - 1502
  • [46] TORSION OF RATIONAL ELLIPTIC CURVES OVER CUBIC FIELDS
    Gonzalez-Jimenez, Enrique
    Najman, Filip
    Tornero, Jose M.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (06) : 1899 - 1917
  • [47] TORSION OF ELLIPTIC CURVES OVER CYCLIC CUBIC FIELDS
    Derickx, Maarten
    Najman, Filip
    MATHEMATICS OF COMPUTATION, 2019, 88 (319) : 2443 - 2459
  • [48] FAMILIES OF ELLIPTIC CURVES OVER CUBIC NUMBER FIELDS WITH PRESCRIBED TORSION SUBGROUPS
    Jeon, Daeyeol
    Kim, Chang Heon
    Lee, Yoonjin
    MATHEMATICS OF COMPUTATION, 2011, 80 (273) : 579 - 591
  • [49] QUADRATIC POINTS ON MODULAR CURVES WITH INFINITE MORDELL-WEIL GROUP
    Box, Josha
    MATHEMATICS OF COMPUTATION, 2021, 90 (327) : 321 - 343
  • [50] Equations and rational points of the modular curves X0+ (p)
    Mercuri, Pietro
    RAMANUJAN JOURNAL, 2018, 47 (02) : 291 - 308