Intermediate modular curves with infinitely many cubic points over Q

被引:0
|
作者
Dalal, Tarun [1 ]
机构
[1] Shanghai Tech Univ, Inst Math Sci, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
关键词
Modular curve; intermediate; cubic point; ELLIPTIC-CURVES; TORSION;
D O I
10.1142/S1793042124500350
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we determine all intermediate modular curves X-Delta(N) that admit infinitely many cubic points over the rational field Q.
引用
收藏
页码:701 / 713
页数:13
相关论文
共 50 条
  • [1] Modular curves with infinitely many cubic points
    Jeon, Daeyeol
    JOURNAL OF NUMBER THEORY, 2021, 219 : 344 - 355
  • [2] MODULAR CURVES WITH INFINITELY MANY QUARTIC POINTS
    Hwang, Wontae
    Jeon, Daeyeol
    MATHEMATICS OF COMPUTATION, 2023, : 383 - 395
  • [3] Infinitely many cubic points for X0+(N) over Q
    Bars, Francesc
    Dalal, Tarun
    ACTA ARITHMETICA, 2022, 206 (04) : 373 - 388
  • [4] Modular curves of prime-power level with infinitely many rational points
    Sutherland, Andrew V.
    Zywina, David
    ALGEBRA & NUMBER THEORY, 2017, 11 (05) : 1199 - 1229
  • [5] Modular curves X0(N) with infinitely many quartic points
    Derickx, Maarten
    Orlic, Petar
    RESEARCH IN NUMBER THEORY, 2024, 10 (02)
  • [6] Elliptic curves over Q∞ are modular
    Thorne, Jack A.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (07) : 1943 - 1948
  • [7] Bielliptic intermediate modular curves
    Jeon, Daeyeol
    Kim, Chang Heon
    Schweizer, Andreas
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (01) : 272 - 299
  • [8] Cubic and Quartic Points on Modular Curves Using Generalised Symmetric Chabauty
    Box, Josha
    Gajovic, Stevan
    Goodman, Pip
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (07) : 5604 - 5659
  • [9] Elliptic curves over totally real cubic fields are modular
    Derickx, Maarten
    Najman, Filip
    Siksek, Samir
    ALGEBRA & NUMBER THEORY, 2020, 14 (07) : 1791 - 1800
  • [10] MODULAR FORMS AND ELLIPTIC CURVES OVER THE CUBIC FIELD OF DISCRIMINANT -23
    Gunnells, Paul E.
    Yasaki, Dan
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (01) : 53 - 76