Identification of heavy metal pollutants in wheat by THz spectroscopy and deep support vector machine

被引:9
作者
Ge, Hongyi [1 ,2 ,3 ]
Ji, Xiaodi [1 ,2 ,3 ]
Lu, Xuejing [5 ]
Lv, Ming [1 ,2 ,3 ]
Jiang, Yuying [1 ,2 ,4 ]
Jia, Zhiyuan [1 ,2 ,3 ]
Zhang, Yuan [1 ,2 ,3 ]
机构
[1] Henan Univ Technol, Key Lab Grain Informat Proc & Control, Minist Educ, Zhengzhou 450001, Henan, Peoples R China
[2] Henan Prov Key Lab Grain Photoelect Detect & Contr, Zhengzhou 450001, Henan, Peoples R China
[3] Henan Univ Technol, Coll Informat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
[4] Henan Univ Technol, Sch Artificial Intelligence & Big Data, Zhengzhou 450001, Henan, Peoples R China
[5] PLA Strateg Support Force Informat Engn Univ, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Heavy metal pollutants in wheat; Terahertz (THz) spectrum; Deep support vector machine;
D O I
10.1016/j.saa.2023.123206
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
This paper proposes to detect heavy metal pollutants in wheat using terahertz spectroscopy and deep support vector machine (DSVM). Five heavy metal pollutants, arsenic, lead, mercury, chromium, and cadmium, were considered for detection in wheat samples. THz spectral data were pre-processed by wavelet denoising. DSVM was introduced to further enhance the accuracy of the SVM classification model. According to the relationship between the accuracy and the training time with the number of hidden layers ranging from 1 to 4, the model performs the best when the hidden layer network has three layers. Besides, using the back-propagation algorithm to optimize the entire DSVM network. Compared with Deep neural network (DNN) and SVM models, the comprehensive evaluation index of the proposed model optimized by DSVM has the highest accuracy of 91.3 %. It realized the exploration enhanced the classification accuracy of the heavy metal pollutants in wheat.
引用
收藏
页数:9
相关论文
共 43 条
[11]   Wavelet de-noising of optical terahertz pulse imaging data [J].
Ferguson, B ;
Abbott, D .
FLUCTUATION AND NOISE LETTERS, 2001, 1 (02) :L65-L69
[12]   A signal invariant wavelet function selection algorithm [J].
Garg, Girisha .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2016, 54 (04) :629-642
[13]   Identification of wheat quality using THz spectrum [J].
Ge, Hongyi ;
Jiang, Yuying ;
Xu, Zhaohui ;
Lian, Feiyu ;
Zhang, Yuan ;
Xia, Shanhong .
OPTICS EXPRESS, 2014, 22 (10) :12533-12544
[14]   F*: an interpretable transformation of the F-measure [J].
Hand, David J. ;
Christen, Peter ;
Kirielle, Nishadi .
MACHINE LEARNING, 2021, 110 (03) :451-456
[15]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[16]   Quantitative analysis of wheat maltose by combined terahertz spectroscopy and imaging based on Boosting ensemble learning [J].
Jiang, Yuying ;
Ge, Hongyi ;
Zhang, Yuan .
FOOD CHEMISTRY, 2020, 307
[17]   Observation of broadband terahertz wave generation from liquid water [J].
Jin, Qi ;
Yiwen, E. ;
Williams, Kaia ;
Dai, Jianming ;
Zhang, X. -C. .
APPLIED PHYSICS LETTERS, 2017, 111 (07)
[18]   A crossbar array of magnetoresistive memory devices for in-memory computing [J].
Jung, Seungchul ;
Lee, Hyungwoo ;
Myung, Sungmeen ;
Kim, Hyunsoo ;
Yoon, Seung Keun ;
Kwon, Soon-Wan ;
Ju, Yongmin ;
Kim, Minje ;
Yi, Wooseok ;
Han, Shinhee ;
Kwon, Baeseong ;
Seo, Boyoung ;
Lee, Kilho ;
Koh, Gwan-Hyeob ;
Lee, Kangho ;
Song, Yoonjong ;
Choi, Changkyu ;
Ham, Donhee ;
Kim, Sang Joon .
NATURE, 2022, 601 (7892) :211-+
[19]   Heavy metals and probabilistic risk assessment via rice consumption in Thailand [J].
Kukusamude, Chunyapuk ;
Sricharoen, Phitchan ;
Limchoowong, Nunticha ;
Kongsri, Supalak .
FOOD CHEMISTRY, 2021, 334
[20]  
Li B., 2016, Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, V47, P291