Identification of heavy metal pollutants in wheat by THz spectroscopy and deep support vector machine

被引:9
作者
Ge, Hongyi [1 ,2 ,3 ]
Ji, Xiaodi [1 ,2 ,3 ]
Lu, Xuejing [5 ]
Lv, Ming [1 ,2 ,3 ]
Jiang, Yuying [1 ,2 ,4 ]
Jia, Zhiyuan [1 ,2 ,3 ]
Zhang, Yuan [1 ,2 ,3 ]
机构
[1] Henan Univ Technol, Key Lab Grain Informat Proc & Control, Minist Educ, Zhengzhou 450001, Henan, Peoples R China
[2] Henan Prov Key Lab Grain Photoelect Detect & Contr, Zhengzhou 450001, Henan, Peoples R China
[3] Henan Univ Technol, Coll Informat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
[4] Henan Univ Technol, Sch Artificial Intelligence & Big Data, Zhengzhou 450001, Henan, Peoples R China
[5] PLA Strateg Support Force Informat Engn Univ, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Heavy metal pollutants in wheat; Terahertz (THz) spectrum; Deep support vector machine;
D O I
10.1016/j.saa.2023.123206
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
This paper proposes to detect heavy metal pollutants in wheat using terahertz spectroscopy and deep support vector machine (DSVM). Five heavy metal pollutants, arsenic, lead, mercury, chromium, and cadmium, were considered for detection in wheat samples. THz spectral data were pre-processed by wavelet denoising. DSVM was introduced to further enhance the accuracy of the SVM classification model. According to the relationship between the accuracy and the training time with the number of hidden layers ranging from 1 to 4, the model performs the best when the hidden layer network has three layers. Besides, using the back-propagation algorithm to optimize the entire DSVM network. Compared with Deep neural network (DNN) and SVM models, the comprehensive evaluation index of the proposed model optimized by DSVM has the highest accuracy of 91.3 %. It realized the exploration enhanced the classification accuracy of the heavy metal pollutants in wheat.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications [J].
Alengebawy, Ahmed ;
Abdelkhalek, Sara Taha ;
Qureshi, Sundas Rana ;
Wang, Man-Qun .
TOXICS, 2021, 9 (03) :1-34
[2]   Cost-Sensitive Learning based on Performance Metric for Imbalanced Data [J].
Aurelio, Yuri Sousa ;
de Almeida, Gustavo Matheus ;
de Castro, Cristiano Leite ;
Braga, Antonio Padua .
NEURAL PROCESSING LETTERS, 2022, 54 (04) :3097-3114
[3]   Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry [J].
Bua, Daniel Giuseppe ;
Annuario, Giovanni ;
Albergamo, Ambrogina ;
Cicero, Nicola ;
Dugo, Giacomo .
FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE, 2016, 9 (03) :210-216
[4]   Terahertz transmission spectroscopy of soil minerals for geoarchaeological evaluation of sediments excavated from Pinagbayanan Batangas Philippines [J].
Cafe, Arven I. ;
Bacaoco, Miguel ;
Tugado, Catherine ;
De los Reyes, Alexander ;
Angela Faustino, Maria ;
Lopez, Lorenzo, Jr. ;
Hernandez, Vito ;
Mabanag, Mark ;
Lipardo, Ian ;
Barretto Tesoro, Grace ;
Estacio, Elmer S. .
INFRARED PHYSICS & TECHNOLOGY, 2020, 111
[5]   Objective and efficient terahertz signal denoising by transfer function reconstruction [J].
Chen, Xuequan ;
Sun, Qiushuo ;
Stantchev, Rayko, I ;
Pickwell-MacPherson, Emma .
APL PHOTONICS, 2020, 5 (05)
[6]   Characterization of the remediation of chromium ion contamination with bentonite by terahertz time-domain spectroscopy [J].
Cheng, Hang ;
Huang, Hao-chong ;
Yang, Meng-fan ;
Yang, Mei-hui ;
Yan, He ;
Panezai, Spozmai ;
Zheng, Zhi-Yuan ;
Zhang, Zhuo ;
Zhang, Zi-li .
SCIENTIFIC REPORTS, 2022, 12 (01)
[7]   Spatial distribution of heavy metals in rice grains and human health risk assessment in Hunan Province, China [J].
Cui, Hongsheng ;
Wen, Jia ;
Yang, Lisha ;
Wang, Qi .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (55) :83126-83137
[8]   Material parameter estimation with terahertz time-domain spectroscopy [J].
Dorney, TD ;
Baraniuk, RG ;
Mittleman, DM .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (07) :1562-1571
[9]   Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy [J].
Duvillaret, L ;
Garet, F ;
Coutaz, JL .
APPLIED OPTICS, 1999, 38 (02) :409-415
[10]   Materials for terahertz science and technology [J].
Ferguson, B ;
Zhang, XC .
NATURE MATERIALS, 2002, 1 (01) :26-33