Strong edge-coloring of 2-degenerate graphs

被引:1
作者
Yu, Gexin [1 ]
Yu, Rachel [2 ]
机构
[1] William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Jamestown High Sch, Williamsburg, VA 23185 USA
关键词
Strong edge-coloring; 2-Degenerate graph; STRONG CHROMATIC INDEX;
D O I
10.1016/j.dam.2023.03.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A strong edge-coloring of a graph G is an edge-coloring in which every color class is an induced matching, and the strong chromatic index chi(s)' (G) is the minimum number of colors needed in strong edge-colorings of G. A graph is 2-degenerate if every subgraph has minimum degree at most 2. Choi, Kim, Kostochka, and Raspaud (2016) showed chi(s)'(G) <= 5 Delta + 1 if G is a 2-degenerate graph with maximum degree Delta. In this article, we improve it to chi(s)'(G) <= 5 Delta - Delta(1/2-is an element of) + 2 when Delta >= 4(1/(2 is an element of)) for any 0 < is an element of <= 1/2. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 14
页数:4
相关论文
共 16 条
[1]   THE STRONG CHROMATIC INDEX OF A CUBIC GRAPH IS AT MOST 10 [J].
ANDERSEN, LD .
DISCRETE MATHEMATICS, 1992, 108 (1-3) :231-252
[2]   Colouring graphs with sparse neighbourhoods: Bounds and applications [J].
Bonamy, Marthe ;
Perrett, Thomas ;
Postle, Luke .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 155 :278-317
[3]   A Stronger Bound for the Strong Chromatic Index [J].
Bruhn, Henning ;
Joos, Felix .
COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (01) :21-43
[4]   Strong Chromatic Index of 2-Degenerate Graphs [J].
Chang, Gerard Jennhwa ;
Narayanan, N. .
JOURNAL OF GRAPH THEORY, 2013, 73 (02) :119-126
[5]   Strong edge-colorings of sparse graphs with large maximum degree [J].
Choi, Ilkyoo ;
Kim, Jaehoon ;
Kostochka, Alexandr V. ;
Raspaud, Andre .
EUROPEAN JOURNAL OF COMBINATORICS, 2018, 67 :21-39
[6]   THE MAXIMUM NUMBER OF EDGES IN 2K2-FREE GRAPHS OF BOUNDED DEGREE [J].
CHUNG, FRK ;
GYARFAS, A ;
TUZA, Z ;
TROTTER, WT .
DISCRETE MATHEMATICS, 1990, 81 (02) :129-135
[7]   Recent progress on strong edge-coloring of graphs [J].
Deng, Kecai ;
Yu, Gexin ;
Zhou, Xiangqian .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (05)
[8]  
Fouquet J.-L., 1983, Ars Combin., V16, P141, DOI DOI 10.1090/S0894-0347-1992-1124979-1
[9]   INDUCED MATCHINGS IN CUBIC GRAPHS [J].
HORAK, P ;
QING, H ;
TROTTER, WT .
JOURNAL OF GRAPH THEORY, 1993, 17 (02) :151-160
[10]  
Huang MF, 2018, ELECTRON J COMB, V25