On the Weak Boundedness of Multilinear Littlewood-Paley Functions

被引:0
作者
Hormozi, Mahdi [1 ]
Sawano, Yoshihiro [2 ]
Yabuta, Kozo [3 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[2] Chuo Univ, Dept Math, 1-13-27 Kasuga, Tokyo 1128551, Japan
[3] Kwansei Gakuin Univ, Res Ctr Math & Data Sci, Gakuen 2-1, Sanda 6691337, Japan
基金
日本学术振兴会;
关键词
Singular integrals; Weighted norm inequalities; Aperture dependence; OPERATORS; BOUNDS;
D O I
10.1007/s00041-023-10030-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, notwithstanding the generalization, we simplify and shorten the proofs of the main results of the third author's paper (Shi et al in J Math Pures Appl 101:394-413, 2014) significantly. In particular, the new proof for Shi et al (J Math Pures Appl 101:394-413, 2014, Theorem 1.1) is quite short and, unlike the original proof, does not rely on the properties of the "Marcinkiewicz function". This allows us to get a precise linear dependence on Dini constants with a subsequent application to Littlewood-Paley operators by well-known techniques. In other words, we relax the log-Dini condition in the pointwise bound to the classical Dini condition. This solves an open problem (see e.g. Cao and Yabuta in J Fourier Anal Appl 25(3):1203-1247, 2019, pp. 37-38). Our method can be applied to the multilinear case.
引用
收藏
页数:42
相关论文
共 25 条
[1]  
Bui T.A., PREPRINT
[2]   Quantitative Estimates for Square Functions with New Class of Weights [J].
Bui, The Anh ;
Bui, The Quan ;
Duong, Xuan Thinh .
POTENTIAL ANALYSIS, 2022, 57 (04) :545-569
[3]   Weak and Strong Type Estimates for the Multilinear Littlewood-Paley Operators [J].
Cao, Mingming ;
Hormozi, Mahdi ;
Ibanez-Firnkorn, Gonzalo ;
Rivera-Rios, Israel P. ;
Si, Zengyan ;
Yabuta, Kozo .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (04)
[4]   The Multilinear Littlewood-Paley Operators with Minimal Regularity Conditions [J].
Cao, Mingming ;
Yabuta, Kozo .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (03) :1203-1247
[5]   THE CAUCHY INTEGRAL DEFINES AN OPERATOR ON L2 FOR LIPSCHITZ-CURVES [J].
COIFMAN, RR ;
MCINTOSH, A ;
MEYER, Y .
ANNALS OF MATHEMATICS, 1982, 116 (02) :361-387
[6]   COMMUTATORS OF SINGULAR INTEGRALS AND BILINEAR SINGULAR INTEGRALS [J].
COIFMAN, RR ;
MEYER, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) :315-331
[7]   SCOPE OF THE SQUARE ROOT BY CERTAIN ACCRETIVE DIFFERENTIAL-OPERATORS [J].
COIFMAN, RR ;
DENG, DG ;
MEYER, Y .
ANNALES DE L INSTITUT FOURIER, 1983, 33 (02) :123-134
[8]   New bounds for bilinear Calderon-Zygmund operators and applications [J].
Damian, Wendolin ;
Hormozi, Mandi ;
Li, Kangwei .
REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (03) :1177-1210
[9]  
Duoandikoetxea J, 2001, GRADUATE STUDIES MAT, V29, DOI [10.1090/gsm/029, DOI 10.1090/GSM/029]
[10]   NECESSARY AND SUFFICIENT CONDITIONS FOR ABSOLUTE CONTINUITY OF ELLIPTIC-HARMONIC MEASURE [J].
FABES, EB ;
JERISON, DS ;
KENIG, CE .
ANNALS OF MATHEMATICS, 1984, 119 (01) :121-141