Subseasonal predictions for climate services, a recipe for operational implementation

被引:6
作者
Manrique-Sunen, Andrea [1 ]
Palma, Lluis [1 ]
Gonzalez-Reviriego, Nube [1 ]
Doblas-Reyes, Francisco J. [1 ,2 ]
Soret, Albert [1 ]
机构
[1] Barcelona Supercomp Ctr BSC, Carrer Jordi Girona 29, Barcelona 08034, Spain
[2] Inst Catalana Recerca & Estudis Avancats ICREA, Passeig Lluis Co 23, Barcelona 08010, Spain
关键词
Subseasonal climate forecasting; Climate services; Operational climate prediction; Climate adaptation; Energy; Agriculture; FORECASTS; SYSTEM;
D O I
10.1016/j.cliser.2023.100359
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The implementation of operational climate service prototypes, which encompasses the co-design and delivery of real-time actionable products with/to stakeholders, contributes to efficiently leveraging operational climate predictions into actionable climate information by providing practical insight on the actual use of climate pre-dictions. This work showcases a general guideline for implementing an operational climate service based on subseasonal predictions. At this timescale, many strategic decisions can benefit from timely predictions of climate variables. Still, the use of subseasonal predictions is not fully exploited. Here, we describe the key aspects considered to set up an operational climate service from the conception to the production phase. These include the choice of the subseasonal systems, the data sources and the methodology employed for post-processing the predictions. To illustrate the process with a real case, we present the detailed workflow design of the imple-mentation of a climate service based on subseasonal predictions and describe the bias adjustment and verifi-cation methodologies implemented. This work was developed in the H2020 S2S4E project, where industrial and research partners co-developed a fully-operational Decision Support Tool (DST) providing 18 months of real-time subseasonal and seasonal forecasts tailored to the specific needs of the renewable energy sector. The operational workflow can be adapted to serve forecast products to other sectors, as has been proved in the H2020 vitiGEOSS project, where the workflow was modified to provide downscaled subseasonal predictions to specific locations. We consider this a valuable contribution to future developments of similar service implementations and the producers of the climate data.
引用
收藏
页数:12
相关论文
共 39 条
[1]  
[Anonymous], 2017, EasyVerification: Ensemble Forecast Verification for Large Data Sets
[2]  
Bahra A., 2011, ECMWF Newsletter, V129, P30, DOI [10.21957/nr843dob, DOI 10.21957/NR843DOB]
[3]   Climate service development, delivery and use in Europe at monthly to inter-annual timescales [J].
Buontempo, Carlo ;
Hewitt, Chris D. ;
Doblas-Reyes, Francisco J. ;
Dessai, Suraje .
CLIMATE RISK MANAGEMENT, 2014, 6 :1-5
[4]   Introducing design in the development of effective climate services [J].
Christel, Isadora ;
Hemment, Drew ;
Bojovic, Dragana ;
Cucchietti, Fernando ;
Calvo, Luz ;
Stefaner, Moritz ;
Buontempo, Carlo .
CLIMATE SERVICES, 2018, 9 :111-121
[5]   The rationale behind the success of multi-model ensembles in seasonal forecasting - II. Calibration and combination [J].
Doblas-Reyes, FJ ;
Hagedorn, R ;
Palmer, TN .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2005, 57 (03) :234-252
[6]   Advances in the Subseasonal Prediction of Extreme Events Relevant Case Studies across the Globe [J].
Domeisen, Daniela I., V ;
White, Christopher J. ;
Afargan-Gerstman, Hilla ;
Munoz, Angel G. ;
Janiga, Matthew A. ;
Vitart, Frederic ;
Wulff, C. Ole ;
Antoine, Salome ;
Ardilouze, Constantin ;
Bane, Lauriane ;
Bloomfield, Hannah C. ;
Brayshaw, David J. ;
Camargo, Suzana J. ;
Charlton-Perez, Andrew ;
Collins, Dan ;
Cowan, Tim ;
Chaves, Maria del Mar ;
Ferranti, Laura ;
Gomez, Rosario ;
Gonzalez, Paula L. M. ;
Gonzalez Romero, Carmen ;
Infant, Johnna M. ;
Karozis, Stelios ;
Kim, Hera ;
Kolstad, Erik W. ;
LaJoie, Emerson ;
Lleclo, Llorenc ;
Magnusson, Linus ;
Malguzzi, Piero ;
Manrique-Sunen, Andrea ;
Mastrangelo, Daniele ;
Materia, Stefano ;
Medina, Hanoi ;
Palma, Lluis ;
Pineda, Luis E. ;
Sfetsos, Athanasios ;
Son, Seok-Woo ;
Soret, Albert ;
Strazzo, Sarah ;
Tian, Di .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2022, 103 (06) :E1473-E1501
[7]   Fair scores for ensemble forecasts [J].
Ferro, C. A. T. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2014, 140 (683) :1917-1923
[8]  
Guemas V., 2022, S2DVERIFICATION SET
[9]   The ERA5 global reanalysis [J].
Hersbach, Hans ;
Bell, Bill ;
Berrisford, Paul ;
Hirahara, Shoji ;
Horanyi, Andras ;
Munoz-Sabater, Joaquin ;
Nicolas, Julien ;
Peubey, Carole ;
Radu, Raluca ;
Schepers, Dinand ;
Simmons, Adrian ;
Soci, Cornel ;
Abdalla, Saleh ;
Abellan, Xavier ;
Balsamo, Gianpaolo ;
Bechtold, Peter ;
Biavati, Gionata ;
Bidlot, Jean ;
Bonavita, Massimo ;
De Chiara, Giovanna ;
Dahlgren, Per ;
Dee, Dick ;
Diamantakis, Michail ;
Dragani, Rossana ;
Flemming, Johannes ;
Forbes, Richard ;
Fuentes, Manuel ;
Geer, Alan ;
Haimberger, Leo ;
Healy, Sean ;
Hogan, Robin J. ;
Holm, Elias ;
Janiskova, Marta ;
Keeley, Sarah ;
Laloyaux, Patrick ;
Lopez, Philippe ;
Lupu, Cristina ;
Radnoti, Gabor ;
de Rosnay, Patricia ;
Rozum, Iryna ;
Vamborg, Freja ;
Villaume, Sebastien ;
Thepaut, Jean-Noel .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (730) :1999-2049
[10]   Climate services for managing societal risks and opportunities [J].
Hewitt, Chris D. ;
Stone, Roger .
CLIMATE SERVICES, 2021, 23