A machine learning model to predict yield surfaces from crystal simulations

被引:37
作者
Nascimento, Anderson [1 ]
Roongta, Sharan [2 ]
Diehl, Martin [3 ,4 ]
Beyerlein, Irene J. [1 ,5 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Max Planck Inst Eisenforschung, Max Planck Str 1, D-40237 Dusseldorf, Germany
[3] Katholieke Univ Leuven, Dept Mat Engn, Kasteelpk Arenberg 44, B-3001 Leuven, Belgium
[4] Katholieke Univ Leuven, Dept Comp Sci, Celestijnenlaan 200, B-3001 Leuven, Belgium
[5] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
A; Yield condition; B; Crystal plasticity; Machine learning; Neural network; TEMPERATURE FLOW BEHAVIOR; NEURAL-NETWORK; PLASTICITY; ALUMINUM; TEXTURE; STRESS; CALIBRATION; CRITERION; STRAIN; BOUNDS;
D O I
10.1016/j.ijplas.2022.103507
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We introduce a microstructurally informed machine learning model for predicting the anisotropic yield surfaces of polycrystalline materials. A full-field, spatially resolved crystal plasticity model is employed to generate a data set describing the yield response of an aluminum alloy, enabling the training of a neural network yield function and the calibration of 3D yield criteria of plastically anisotropic polycrystals. This novel formulation explores the flexibility of neural networks to describe complex-shaped yield loci and avoids common problems associated with conventional 3D yield functions, such as the non-trivial parameter identification and non -uniqueness of the anisotropy coefficients. Here, Bayesian optimization is applied to obtain an optimal neural network architecture and allows for an automated model design. The neural network yield function is able to learn intrinsic properties such as the convexity of the yield hull and tension-compression symmetry from a relatively small number of data points. The fully data-driven yield criterion can accurately reproduce multiaxial flow response and planar anisotropy despite of its material blind initial state. Stress gradients can also be computed from the neural network through automatic differentiation as derived quantities with good fidelity. This allows the calculation of r-values and provides a pathway for implementing the neural network yield model into finite element codes.
引用
收藏
页数:20
相关论文
共 83 条
[1]   Evaluation and calibration of anisotropic yield criteria in shear Loading: Constraints to eliminate numerical artefacts [J].
Abedini, A. ;
Butcher, C. ;
Rahmaan, T. ;
Worswick, M. J. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2018, 151 :118-134
[2]   Behaviour of extruded aluminium alloys under proportional and non-proportional strain paths [J].
Achani, D. ;
Hopperstad, O. S. ;
Lademo, O. -G. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (10) :4750-4764
[3]   Artificial Neural Network Modeling of Flow Stress in Hot Rolling [J].
Aghasafari, Parya ;
Abdi, Hamid ;
Salimi, Mahmoud .
ISIJ INTERNATIONAL, 2014, 54 (04) :872-879
[4]   Application of artificial neural networks in micromechanics for polycrystalline metals [J].
Ali, Usman ;
Muhammad, Waqas ;
Brahme, Abhijit ;
Skiba, Oxana ;
Inal, Kaan .
INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 120 :205-219
[5]   New convex yield functions for orthotropic metal plasticity [J].
Aretz, Holger ;
Barlat, Frederic .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2013, 51 :97-111
[6]   Analysis of Earing in Deep Drawn Cups [J].
Aretz, Holger ;
Aegerter, Johannes ;
Engler, Olaf .
NUMIFORM 2010, VOLS 1 AND 2: DEDICATED TO PROFESSOR O. C. ZIENKIEWICZ (1921-2009), 2010, 1252 :417-424
[7]  
Banabic D., 2000, 7 TPR 2000 COLD MET, P217
[8]   A 6-COMPONENT YIELD FUNCTION FOR ANISOTROPIC MATERIALS [J].
BARLAT, F ;
LEGE, DJ ;
BREM, JC .
INTERNATIONAL JOURNAL OF PLASTICITY, 1991, 7 (07) :693-712
[9]   Plane stress yield function for aluminum alloy sheets - part 1: theory [J].
Barlat, F ;
Brem, JC ;
Yoon, JW ;
Chung, K ;
Dick, RE ;
Lege, DJ ;
Pourgoghrat, F ;
Choi, SH ;
Chu, E .
INTERNATIONAL JOURNAL OF PLASTICITY, 2003, 19 (09) :1297-1319
[10]   Linear transfomation-based anisotropic yield functions [J].
Barlat, F ;
Aretz, H ;
Yoon, JW ;
Karabin, ME ;
Brem, JC ;
Dick, RE .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (05) :1009-1039