A projection algorithm for pseudomonotone vector fields with convex constraints on Hadamard manifolds

被引:1
作者
Zhao, Zhi [1 ]
Zeng, Qin [1 ]
Xu, Yu-Nong [1 ]
Qian, Ya-Guan [2 ]
Yao, Teng-Teng [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Dept Math, Hangzhou 310018, Peoples R China
[2] Zhejiang Univ Sci & Technol, Sch Sci, Dept Math, Hangzhou 310023, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Pseudomonotone vector field; Hyperplane projection method; Convex constraint; Hadamard manifold; PROXIMAL POINT ALGORITHM; VARIATIONAL-INEQUALITIES; RIEMANNIAN-MANIFOLDS; MONOTONE EQUATIONS; NEWTONS METHOD; CONVERGENCE;
D O I
10.1007/s11075-022-01464-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an algorithm for finding a zero of a pseudomonotone vector field with a convex constraint on a Hadamard manifold. This new method is the combination of the hyperplane projection method with specially constructed search directions. The global convergence property of this algorithm is established under the assumptions that the constructed halfspace is closed and convex, the tangent vector field is continuous, and the solution set is nonempty. Numerical experiments show the efficiency of this new derivative-free iterative method.
引用
收藏
页码:1209 / 1223
页数:15
相关论文
共 33 条
  • [1] Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
  • [2] Newton's method on Riemannian manifolds and a geometric model for the human spine
    Adler, RL
    Dedieu, JP
    Margulies, JY
    Martens, M
    Shub, M
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (03) : 359 - 390
  • [3] Existence and boundedness of solutions to inclusion problems for maximal monotone vector fields in Hadamard manifolds
    Ansari, Qamrul Hasan
    Babu, Feeroz
    [J]. OPTIMIZATION LETTERS, 2020, 14 (03) : 711 - 727
  • [4] Ansari QH, 2018, J NONLINEAR CONVEX A, V19, P219
  • [5] Ansari QH, 2017, J NONLINEAR CONVEX A, V18, P743
  • [6] AN EXTRAGRADIENT-TYPE ALGORITHM FOR VARIATIONAL INEQUALITY ON HADAMARD MANIFOLDS
    Batista, E. E. A.
    Bento, G. C.
    Ferreira, O. P.
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [7] Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds
    Bento, Glaydston C.
    Ferreira, Orizon P.
    Melo, Jefferson G.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 173 (02) : 548 - 562
  • [8] A PRP type method for systems of monotone equations
    Cheng, Wanyou
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (1-2) : 15 - 20
  • [9] Convex- and monotone-transformable mathematical programming problems and a proximal-like point method
    Da Cruz Neto, J. X.
    Ferreira, O. P.
    Perez, L. R. Lucambio
    Nemeth, S. Z.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (01) : 53 - 69
  • [10] Newton's method on Riemannian manifolds: covariant alpha theory
    Dedieu, JP
    Priouret, P
    Malajovich, G
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (03) : 395 - 419