Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries

被引:394
作者
Li, Zhuangnan [1 ,2 ]
Sami, Ismail [1 ,3 ]
Yang, Jieun [1 ,4 ,5 ]
Li, Juntao [2 ,6 ]
Kumar, Ramachandran Vasant [1 ,2 ]
Chhowalla, Manish [1 ,2 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, Cambridge, England
[2] Faraday Inst, Harwell Campus, Didcot, England
[3] Univ Cambridge, Cambridge Graphene Ctr, Cambridge, England
[4] Kyung Hee Univ, Dept Chem, Seoul, South Korea
[5] Kyung Hee Univ, Res Inst Basic Sci, Seoul, South Korea
[6] UCL, Dept Chem, London, England
基金
英国工程与自然科学研究理事会;
关键词
MOS2; NANOSHEETS; CATHODES; ARCHITECTURES; POLYSULFIDE; NANOWIRES; ELECTRODE; ROBUST;
D O I
10.1038/s41560-022-01175-7
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Batteries based on redox chemistries that can store more energy than state-of-the-art lithium-ion systems will play an important role in enabling the energy transition to net zero carbon emissions. Lithium-sulfur (Li-S) batteries have shown extraordinary promise, where the electrically insulating sulfur must be loaded onto a conducting host. Here we report the use of pre-lithiated metallic 1T phase two-dimensional (2D) molybdenum disulfide (LixMoS2) as a sulfur host material for high-performance Li-S batteries under lean electrolyte conditions. The lithiation of conductive and lyophilic 1T phase MoS2 nanosheets leads to improved adsorption of lithium polysulfides, enhanced Li+ transport, accelerated electrochemical reaction kinetics and superior electrocatalytic activity for polysulfide conversion. These attributes enable pouch cell batteries to deliver energy density of 441 Wh kg(-1) and 735 Wh l(-1), together with capacity retention of 85.2% after 200 cycles. Our results provide insights into the design of practical Li-S cathodes based on electrocatalytically active and conducting 2D materials.
引用
收藏
页码:84 / 93
页数:10
相关论文
共 63 条
[1]   Metallic molybdenum disulfide nanosheet-based electrochemical actuators [J].
Acerce, Muharrem ;
Akdogan, E. Koray ;
Chhowalla, Manish .
NATURE, 2017, 549 (7672) :370-+
[2]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/nnano.2015.40, 10.1038/NNANO.2015.40]
[3]  
Bard A., 2001, Electrochemical Methods: Fundamentals and Applications, V2nd ed.
[4]   Heterointerface effects in the electrointercalation of van der Waals heterostructures [J].
Bediako, D. Kwabena ;
Rezaee, Mehdi ;
Yoo, Hyobin ;
Larson, Daniel T. ;
Zhao, S. Y. Frank ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Brower-Thomas, Tina L. ;
Kaxiras, Efthimios ;
Kim, Philip .
NATURE, 2018, 558 (7710) :425-+
[5]   Lithium-Sulfur Batteries: Attaining the Critical Metrics [J].
Bhargav, Amruth ;
He, Jiarui ;
Gupta, Abhay ;
Manthiram, Arumugam .
JOULE, 2020, 4 (02) :285-291
[6]  
Billaud J, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.97, 10.1038/nenergy.2016.97]
[7]   Rational Design of Cathode Structure for High Rate Performance Lithium-Sulfur Batteries [J].
Chen, Hongwei ;
Wang, Changhong ;
Dai, Yafei ;
Qiu, Shengqiang ;
Yang, Jinlong ;
Lu, Wei ;
Chen, Liwei .
NANO LETTERS, 2015, 15 (08) :5443-5448
[8]   Improving Lithium-Sulfur Battery Performance under Lean Electrolyte through Nanoscale Confinement in Soft Swellable Gels [J].
Chen, Junzheng ;
Henderson, Wesley A. ;
Pan, Huilin ;
Perdue, Brian R. ;
Cao, Ruiguo ;
Hu, Jian Zhi ;
Wan, Chuan ;
Han, Kee Sung ;
Mueller, Karl T. ;
Zhang, Ji-Guang ;
Shao, Yuyan ;
Liu, Jun .
NANO LETTERS, 2017, 17 (05) :3061-3067
[9]   Constructing a 700 Wh kg-1-level rechargeable lithium-sulfur pouch cell [J].
Cheng, Qian ;
Chen, Zi-Xian ;
Li, Xi-Yao ;
Hou, Li-Peng ;
Bi, Chen -Xi ;
Zhang, Xue-Qiang ;
Huang, Jia-Qi ;
Li, Bo-Quan .
JOURNAL OF ENERGY CHEMISTRY, 2023, 76 :181-186
[10]   The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection [J].
Cheng, Xin-Bing ;
Yan, Chong ;
Huang, Jia-Qi ;
Li, Peng ;
Zhu, Lin ;
Zhao, Lida ;
Zhang, Yingying ;
Zhu, Wancheng ;
Yang, Shu-Ting ;
Zhang, Qiang .
ENERGY STORAGE MATERIALS, 2017, 6 :18-25