Sharp remainder of the Poincare inequality for Baouendi-Grushin vector fields

被引:0
作者
Suragan, Durvudkhan [1 ]
Yessirkegenov, Nurgissa [2 ]
机构
[1] Nazarbayev Univ, Dept Math, Astana, Kazakhstan
[2] Suleyman Demirel Univ, Kaskelen, Kazakhstan
关键词
Poincare inequalitiy; Baouendi-Grushin operator; eigenfunction; blow-up solution; HARDY INEQUALITIES; BLOW-UP; EQUATIONS; NONEXISTENCE; THEOREMS; OPERATOR;
D O I
10.1142/S1793557123500419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we establish a sharp remainder formula for the Poincare inequality for the Baouendi-Crushin vector fields. We give a simple proof for it without using the variational principle. As an application, we obtain a blow-up result for solutions to the Dirichlet initial-boundary value problem for the Baouendi-Grushin heat operator.
引用
收藏
页数:8
相关论文
共 26 条
[21]   Decomposing Euler-Poincare Flow on the Space of Hamiltonian Vector Fields [J].
Esen, Ogul ;
De Lucas, Javier ;
Munoz, Cristina Sardon ;
Zajac, Marcin .
SYMMETRY-BASEL, 2023, 15 (01)
[22]   LIOUVILLE RESULTS FOR FULLY NONLINEAR EQUATIONS MODELED ON HO?RMANDER VECTOR FIELDS: II. CARNOT GROUPS AND GRUSHIN GEOMETRIES [J].
Bardi, Martino ;
Goffi, Alessandro .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2023, 28 (7-8) :637-684
[23]   Sharp quantitative stability of Poincare-Sobolev inequality in the hyperbolic space and applications to fast diffusion flows [J].
Bhakta, Mousomi ;
Ganguly, Debdip ;
Karmakar, Debabrata ;
Mazumdar, Saikat .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (01)
[24]   Poincare meets Korn via Maxwell: Extending Korn's first inequality to incompatible tensor fields [J].
Neff, Patrizio ;
Pauly, Dirk ;
Witsch, Karl-Josef .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (04) :1267-1302
[25]   Basic properties of nonsmooth Hormander's vector fields and Poincar's inequality [J].
Bramanti, Marco ;
Brandolini, Luca ;
Pedroni, Marco .
FORUM MATHEMATICUM, 2013, 25 (04) :703-769
[26]   Lr-variational Inequality for Vector Fields and the Helmholtz-Weyl Decomposition in Bounded Domains [J].
Kozono, Hideo ;
Yanagisawa, Taku .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) :1853-1920