Numerical investigation on the effect of Al2O3-water nanofluid on direct steam generation in parabolic trough collectors

被引:6
作者
Chukami, Babak Safari [1 ]
Heyhat, Mohammad Mahdi [1 ]
机构
[1] Tarbiat Modares Univ, Fac Mech Engn, Tehran, Iran
关键词
Direct steam generation; Parabolic trough collectors; Nanofluid; Flow boiling; CFD simulation; Horizontal tube; Non-uniform heat flux; BOILING HEAT-TRANSFER; SOLAR COLLECTOR; MODEL; ENHANCEMENT; PERFORMANCE; CHANNELS; TUBE;
D O I
10.1016/j.applthermaleng.2023.122300
中图分类号
O414.1 [热力学];
学科分类号
摘要
The utilization of solar energy through direct steam generation (DSG) in parabolic trough collectors is a novel approach. In addition, due to higher thermophysical properties, the effect of using nanofluid as the coolant has been the subject of some of the recent studies but the applicability of the nanofluids in DSG process has not been studied before. In this study, the flow boiling of Al2O3 nanofluid at volume fractions 1%, 1.5% and 2%, under uniform and non-uniform heat fluxes has been studied numerically. The Eulerian model was used and nonequilibrium RPI was applied as the boiling model. The validation was done for flow boiling of pure water and Al2O3 nanofluid separately, with the available data in the literature. The results showed that the vapor volume fraction at the outlet is higher under non-uniform heat flux and adding nanoparticles would increase the vapor generation in the tube. Adding nanoparticles to the pure water increased the vapor volume fraction at the outlet up to about 8.64% in respect to pure water under uniform and non-uniform heat fluxes. The average Nu was up to 544% higher under non-uniform heat flux compared to uniform heat flux. Due to the presence of stratified flow, increasing nanofluid concentration reduced the average Nu up to 21.24% and 10.24% under uniform and non-uniform heat flux, respectively.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Two phase mixed convection Al2O3-water nanofluid flow in an annulus
    Moghari, R. Mokhtari
    Akbarinia, A.
    Shariat, M.
    Talebi, F.
    Laur, R.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2011, 37 (06) : 585 - 595
  • [32] Numerical Study of Effect Parameter Fluid Flow Nanofluid Al2O3-Water on Heat Transfer in Corrugated Tube
    Ramadhan, Anwar Ilmar
    Diniardi, Ery
    Dermawan, Erwin
    PROCEEDINGS OF THE 3RD AUN/SEED-NET REGIONAL CONFERENCE ON ENERGY ENGINEERING AND THE 7TH INTERNATIONAL CONFERENCE ON THERMOFLUIDS (RCENE/THERMOFLUID 2015), 2016, 1737
  • [33] Numerical study of different conduction models for Al2O3-water nanofluid with variable properties inside a trapezoidal enclosure
    Arani, Ali Akbar Abbasian
    Azemati, Ali Akbar
    Rezaee, Mohammad
    Hadavand, Behzad Shirkavand
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2017, 31 (05) : 2433 - 2441
  • [34] The interfacial nanolayer role on magnetohydrodynamic natural convection of an Al2O3-water nanofluid
    Benos, Lefteris Th
    Sarris, Ioannis E.
    HEAT TRANSFER ENGINEERING, 2021, 42 (02) : 89 - 105
  • [35] Thermo-hydraulic characteristics of Al2O3-water nanofluid by preconditioned LBM
    Zhang, Yingchun
    Li, Weihong
    Li, Yong
    Xie, Gongnan
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (17) : 9811 - 9827
  • [36] Solar-aided power generation in biomass power plant using direct steam generating parabolic trough collectors
    Chantasiriwan, Somchart
    ENERGY REPORTS, 2022, 8 : 641 - 648
  • [37] NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER FOR AL2O3-WATER NANOFLUID IMPINGING JET
    Vaziel, Parisa
    Abouali, Omid
    ICNMM 2009, PTS A-B, 2009, : 977 - 984
  • [38] Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors
    Montes, M. J.
    Rovira, A.
    Munoz, M.
    Martinez-Val, J. M.
    APPLIED ENERGY, 2011, 88 (09) : 3228 - 3238
  • [39] Nonlinear distributed parameter model and dynamic characteristics of parabolic trough direct steam generation solar collectors
    College of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu Province, China
    不详
    Guo, S. (guosu81@126.com), 1779, Chinese Society for Electrical Engineering (34): : 1779 - 1786
  • [40] Alternative Approach for Thermo-Hydraulic Modeling of Direct Steam Generation in Parabolic Trough Solar Collectors
    Gonzalez-Mora, Eduardo
    Duran-Garcia, M. Dolores
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2024, 16 (05)