Bifurcation Study and Turing Instability in a Diffusive Cell Polarization Model with Source and Loss Terms

被引:0
作者
Liu, Moqing [1 ]
Jiang, Jiao [1 ]
机构
[1] Shanghai Maritime Univ, Sch Sci, Shanghai 201306, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2023年 / 33卷 / 10期
基金
中国国家自然科学基金;
关键词
Cell polarization model; diffusion; Hopf bifurcation; Turing instability; normal form; MEMBRANE TENSION; LEADING-EDGE; POLARITY;
D O I
10.1142/S0218127423501201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the spatiotemporal dynamics in a diffusive cell polarization model with source and loss terms under zero flux boundary conditions. Firstly, we investigate the stability of the positive equilibrium and the existence of Hopf bifurcation for the system without diffusion. Secondly, Turing instability and Turing bifurcation near the positive constant equilibrium are discussed for the diffusive system. Thirdly, the normal forms on the center manifold are given to determine the properties of Turing and Hopf bifurcations. Finally, numerical simulations are performed to illustrate our theoretical results.
引用
收藏
页数:18
相关论文
共 20 条
  • [2] THEORY OF BIOLOGICAL PATTERN FORMATION
    GIERER, A
    MEINHARDT, H
    [J]. KYBERNETIK, 1972, 12 (01): : 30 - 39
  • [3] Membrane Tension Maintains Cell Polarity by Confining Signals to the Leading Edge during Neutrophil Migration
    Houk, Andrew R.
    Jilkine, Alexandra
    Mejean, Cecile O.
    Boltyanskiy, Rostislav
    Dufresne, Eric R.
    Angenent, Sigurd B.
    Altschuler, Steven J.
    Wu, Lani F.
    Weiner, Orion D.
    [J]. CELL, 2012, 148 (1-2) : 175 - 188
  • [4] A Comparison of Mathematical Models for Polarization of Single Eukaryotic Cells in Response to Guided Cues
    Jilkine, Alexandra
    Edelstein-Keshet, Leah
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (04)
  • [5] Mori Y, 2008, BIOPHYS J, V94, P3684, DOI [10.1529/biophysj.107.120824, 10.1529/biophysj.107.120827]
  • [6] ASYMPTOTIC AND BIFURCATION ANALYSIS OF WAVE-PINNING IN A REACTION-DIFFUSION MODEL FOR CELL POLARIZATION
    Mori, Yoichiro
    Jilkine, Alexandra
    Edelstein-Keshet, Leah
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (04) : 1401 - 1427
  • [7] Murray J. D., 2001, MATH BIOL
  • [8] OKUBO A., 2001, DIFFUSION ECOLOGICAL, V14
  • [9] A mass conserved reaction-diffusion system captures properties of cell polarity
    Otsuji, Mikiya
    Ishihara, Shuji
    Co, Carl
    Kaibuchi, Kozo
    Mochizuki, Atsushi
    Kuroda, Shinya
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (06) : 1040 - 1054
  • [10] Rappel Wouter-Jan, 2017, Curr Opin Syst Biol, V3, P43, DOI 10.1016/j.coisb.2017.03.005