Hybrid electrolytes for solid-state lithium batteries: Challenges, progress, and prospects

被引:59
|
作者
Vu, Trang Thi [1 ]
Cheon, Hyeong Jun [2 ]
Shin, Seo Young [2 ]
Jeong, Ganghoon [2 ]
Wi, Eunsol [2 ]
Chang, Mincheol [1 ,2 ,3 ]
机构
[1] Chonnam Natl Univ, Alan G MacDiarmid Energy Res Inst, Gwangju 61186, South Korea
[2] Chonnam Natl Univ, Grad Sch, Dept Polymer Engn, Gwangju 61186, South Korea
[3] Chonnam Natl Univ, Sch Polymer Sci & Engn, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
Solid-state lithium batteries; Hybrid electrolytes; Lithium-ion batteries; Solid-state electrolytes; Advanced computational techniques; HIGH IONIC-CONDUCTIVITY; ELECTROCHEMICAL ENERGY-STORAGE; POLYMER ELECTROLYTES; COMPOSITE ELECTROLYTE; MECHANICAL-PROPERTIES; SEPARATOR MEMBRANES; CRYSTAL-STRUCTURE; LI; PERFORMANCE; OXIDE;
D O I
10.1016/j.ensm.2023.102876
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state lithium batteries (SSLBs) based on solid-state electrolytes (SSEs) are considered ideal candidates to overcome the energy density limitations and safety hazards of traditional Li-ion batteries. However, few individual SSEs fulfill the standard requirements for practical applications owing to their poor performance. Hybrid electrolytes, which rationally integrate the benefits of single inorganic solid electrolytes (ISEs) and solid polymer electrolytes (SPEs) as well as achieve sufficiently high ionic conductivity, low interfacial impedance, and high electrode stability, have attracted significant interest for use in SSLBs. In this review, we describe the chronological progress of solid electrolytes as well as the properties of and challenges associated with single ISEs, SPEs, and hybrid electrolytes. State-of-the-art strategies for overcoming the inherent challenges of hybrid electrolytes, including insufficient ionic conductivity; undesirable electrochemical, thermal, and mechanical properties; and large electrolyte-electrode interfacial impedances, are also summarized. Finally, advanced computational techniques, including density functional theory calculations, ab initio molecular dynamics simulations, and machine-learning-assisted simulation strategies, which complement experimental systems, are discussed. The challenges and future technological perspectives associated with hybrid electrolytes for practical energy-storage systems are also highlighted.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries
    Liang, Jianneng
    Luo, Jing
    Sun, Qian
    Yang, Xiaofei
    Li, Ruying
    Sun, Xueliang
    ENERGY STORAGE MATERIALS, 2019, 21 : 308 - 334
  • [2] Recent Progress of Hybrid Solid-State Electrolytes for Lithium Batteries
    Liu, Xiaoyan
    Li, Xinru
    Li, Hexing
    Wu, Hao Bin
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (69) : 18293 - 18306
  • [3] Solid-State Electrolytes for Lithium-Sulfur Batteries: Challenges, Progress, and Strategies
    Zhu, Qiancheng
    Ye, Chun
    Mao, Deyu
    NANOMATERIALS, 2022, 12 (20)
  • [4] Large-scale manufacturing of solid-state electrolytes: Challenges, progress, and prospects
    Minkiewicz, Justyna
    Jones, Gareth M.
    Ghanizadeh, Shaghayegh
    Bostanchi, Samira
    Wasely, Thomas J.
    Yamini, Sima Aminorroaya
    Nekouie, Vahid
    OPEN CERAMICS, 2023, 16
  • [5] Research Progress on the Composite Methods of Composite Electrolytes for Solid-State Lithium Batteries
    Wang, Xu
    Huang, Sipeng
    Peng, Yiting
    Min, Yulin
    Xu, Qunjie
    CHEMSUSCHEM, 2024, 17 (14)
  • [6] Solid-state lithium batteries: Safety and prospects
    Guo, Yong
    Wu, Shichao
    He, Yan-Bing
    Kang, Feiyu
    Chen, Liquan
    Li, Hong
    Yang, Quan-Hong
    ESCIENCE, 2022, 2 (02): : 138 - 163
  • [7] Progress in solid electrolytes toward realizing solid-state lithium batteries
    Takada, Kazunori
    JOURNAL OF POWER SOURCES, 2018, 394 : 74 - 85
  • [8] Recent Progress of Polymer Electrolytes for Solid-State Lithium Batteries
    Hu, Yilin
    Xie, Xiaoxin
    Li, Wei
    Huang, Qiu
    Huang, Hao
    Hao, Shu-Meng
    Fan, Li-Zhen
    Zhou, Weidong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (04) : 1253 - 1277
  • [9] Solid-State Electrolytes in Lithium-Sulfur Batteries: Latest Progresses and Prospects
    Xian, Chunxiang
    Wang, Qiyue
    Xia, Yang
    Cao, Feng
    Shen, Shenghui
    Zhang, Yongqi
    Chen, Minghua
    Zhong, Yu
    Zhang, Jun
    He, Xinping
    Xia, Xinhui
    Zhang, Wenkui
    Tu, Jiangping
    SMALL, 2023, 19 (24)
  • [10] Research Progress on Solid-State Electrolytes in Solid-State Lithium Batteries: Classification, Ionic Conductive Mechanism, Interfacial Challenges
    Ai, Shun
    Wu, Xianli
    Wang, Jintao
    Li, Xu
    Hao, Xiaofeng
    Meng, Yuezhong
    NANOMATERIALS, 2024, 14 (22)