Broadband Vis-NIR Circular Polarizer with Cascaded Aluminum Wire-Grid

被引:4
作者
Fan, Yuanyi [1 ]
Chu, Jinkui [1 ]
Zhang, Ran [1 ]
Liu, Ze [1 ]
Liu, Jianying [1 ]
Guan, Chuanlong [1 ]
Zhang, Zhichao [1 ]
机构
[1] Dalian Univ Technol, Key Lab Micro Nano Technol & Syst Liaoning Prov, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
anisotropic thin-film interference; broadband circular polarizer; cascaded wire-grid; OPTICAL-RESPONSE; METAMATERIALS; TRANSMISSION; GIANT; CHIRALITY; SYMMETRY; LIGHT; RATIO;
D O I
10.1002/admt.202201394
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A universal design and fabrication scheme is proposed for a cascaded aluminum wire-grid-based vis-NIR circular polarizer. The aluminum wire-grid is designed as a broadband circular-linear polarization converter and a broadband linear polarizer, which is further cascaded to form a circular polarizer with strong circular polarization transmittance difference (CPTD) and circular polarization extinction ratio (CPER) in vis-NIR. By increasing the distance between the circular-linear polarization converter and the linear polarizer, the redshift of the CPTD and CPER peaks is realized and used to design a novel circular polarizer to work better in the operating wavelength. Anisotropic thin-film interference is revealed to be responsible for the redshift phenomenon. Furthermore, the circular polarizer is fabricated by nano imprint lithography and nano transfer printing with the merits of relatively low cost, and high production efficiency. With such flexibility in the design and fabrication, cascaded aluminum wire-grid may serve as a tunable compact circular polarizer, and it is also easy to integrate with the wire-grid-based linear polarizer to realize the fabrication of the division-of-focal-plane full Stokes polarimeter.
引用
收藏
页数:9
相关论文
共 52 条
[1]   Spiral plasmonic nanoantennas as circular polarization transmission filters [J].
Bachman, K. A. ;
Peltzer, J. J. ;
Flammer, P. D. ;
Furtak, T. E. ;
Collins, R. T. ;
Hollingsworth, R. E. .
OPTICS EXPRESS, 2012, 20 (02) :1308-1319
[2]   Self-complementary metasurfaces for linear-to-circular polarization conversion [J].
Baena, J. D. ;
del Risco, J. P. ;
Slobozhanyuk, A. P. ;
Glybovski, S. B. ;
Belov, P. A. .
PHYSICAL REVIEW B, 2015, 92 (24)
[3]   Highly Efficient Anisotropic Chiral Plasmonic Metamaterials for Polarization Conversion and Detection [J].
Bai, Jing ;
Yao, Yu .
ACS NANO, 2021, 15 (09) :14263-14274
[4]   Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection [J].
Bai, Jing ;
Wang, Chu ;
Chen, Xiahui ;
Basiri, Ali ;
Wang, Chao ;
Yao, Yu .
PHOTONICS RESEARCH, 2019, 7 (09) :1051-1060
[5]   Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements [J].
Basiri, Ali ;
Chen, Xiahui ;
Bai, Jing ;
Amrollahi, Pouya ;
Carpenter, Joe ;
Holman, Zachary ;
Wang, Chao ;
Yao, Yu .
LIGHT-SCIENCE & APPLICATIONS, 2019, 8 (1)
[6]   Ferroelectric-tuned van der Waals heterojunction with band alignment evolution [J].
Chen, Yan ;
Wang, Xudong ;
Huang, Le ;
Wang, Xiaoting ;
Jiang, Wei ;
Wang, Zhen ;
Wang, Peng ;
Wu, Binmin ;
Lin, Tie ;
Shen, Hong ;
Wei, Zhongming ;
Hu, Weida ;
Meng, Xiangjian ;
Chu, Junhao ;
Wang, Jianlu .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]   Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking [J].
Chen, Yang ;
Gao, Jie ;
Yang, Xiaodong .
NANO LETTERS, 2018, 18 (01) :520-527
[8]   Giant Chiral Optical Response from a Twisted-Arc Metamaterial [J].
Cui, Yonghao ;
Kang, Lei ;
Lan, Shoufeng ;
Rodrigues, Sean ;
Cai, Wenshan .
NANO LETTERS, 2014, 14 (02) :1021-1025
[9]   Recent Advances in Polarization-Encoded Optical Metasurfaces [J].
Ding, Fei ;
Tang, Shiwei ;
Bozhevolnyi, Sergey, I .
ADVANCED PHOTONICS RESEARCH, 2021, 2 (06)
[10]   Versatile Polarization Generation and Manipulation Using Dielectric Metasurfaces [J].
Ding, Fei ;
Chang, Bingdong ;
Wei, Qunshuo ;
Huang, Lingling ;
Guan, Xiaowei ;
Bozhevolnyi, Sergey I. .
LASER & PHOTONICS REVIEWS, 2020, 14 (11)