Solvability of Parabolic Anderson Equation with Fractional Gaussian Noise

被引:5
作者
Chen, Zhen-Qing [1 ]
Hu, Yaozhong [2 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Univ Alberta Edmonton, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Stochastic heat equation; Fractional Brownian fields; Wiener chaos expansion; Random field solution; Necessary condition; sufficient condition; Moment bounds; STOCHASTIC HEAT-EQUATION; FEYNMAN-KAC FORMULA; DRIVEN; ROUGH; MODEL;
D O I
10.1007/s40304-021-00264-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides necessary as well as sufficient conditions on the Hurst parameters so that the continuous time parabolic Anderson model partial derivative u/partial derivative t = 1/2 Delta+u(W)over dot on [0, infinity) x R-d with d >= 1 has a unique random field solution, where W(t, x) is a fractional Brownian sheet on [0, infinity) x R-d and formally (W)over dot = partial derivative(d+1)/partial derivative(t)partial derivative x(1)...partial derivative x(d) W(t, x). When the noise W(t, x) is white in time, our condition is both necessary and sufficient when the initial data u(0, x) is bounded between two positive constants. When the noise is fractional in time with Hurst parameter H-0 > 1/2, our sufficient condition, which improves the known results in the literature, is different from the necessary one.
引用
收藏
页码:563 / 582
页数:20
相关论文
共 16 条
  • [1] Intermittency for the stochastic heat equation driven by a rough time fractional Gaussian noise
    Chen, Le
    Hu, Yaozhong
    Kalbasi, Kamran
    Nualart, David
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2018, 171 (1-2) : 431 - 457
  • [2] Parabolic Anderson model with a fractional Gaussian noise that is rough in time
    Chen, Xia
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 792 - 825
  • [3] Parabolic Anderson model with rough or critical Gaussian noise
    Chen, Xia
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 941 - 976
  • [4] Da Prato Giuseppe, 2014, Encyclopedia of Mathematics and Its Applications, DOI 10.1017/CBO9780511666223
  • [5] Dalang Robert C., 1999, Electron. J. Probab., V4, P29, DOI DOI 10.1214/EJP.V4-43
  • [6] Stochastic heat equation driven by fractional noise and local time
    Hu, Yaozhong
    Nualart, David
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2009, 143 (1-2) : 285 - 328
  • [7] ON THE NECESSARY AND SUFFICIENT CONDITIONS TO SOLVE A HEAT EQUATION WITH GENERAL ADDITIVE GAUSSIAN NOISE
    Hu, Yaozhong
    Liu, Yanghui
    Tindel, Samy
    [J]. ACTA MATHEMATICA SCIENTIA, 2019, 39 (03) : 669 - 690
  • [8] SOME RECENT PROGRESS ON STOCHASTIC HEAT EQUATIONS
    Hu, Yaozhong
    [J]. ACTA MATHEMATICA SCIENTIA, 2019, 39 (03) : 874 - 914
  • [9] Hu YZ, 2018, ABEL SYMP, V13, P477, DOI 10.1007/978-3-030-01593-0_17
  • [10] JOINT HOLDER CONTINUITY OF PARABOLIC ANDERSON MODEL
    Hu, Yaozhong
    Le, Khoa
    [J]. ACTA MATHEMATICA SCIENTIA, 2019, 39 (03) : 764 - 780