Hyperbolic groups acting improperly

被引:8
作者
Groves, Daniel [1 ]
Manning, Jason Fox [1 ,2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] Cornell Univ, Dept Math, Ithaca, NY USA
基金
美国国家科学基金会;
关键词
RELATIVE HYPERBOLICITY; FINITENESS; SUBGROUPS; SURFACES; FILLINGS;
D O I
10.2140/gt.2023.27.3387
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study hyperbolic groups acting on CAT(0) cube complexes. The first main result is a structural result about the Sageev construction, in which we relate quasiconvexity of hyperplane stabilizers with quasiconvexity of cell stabilizers. The second main result generalizes both Agol's Theorem on cubulated hyperbolic groups and Wise's Quasiconvex Hierarchy Theorem.
引用
收藏
页码:3387 / 3460
页数:76
相关论文
共 36 条
[1]   AN ALTERNATE PROOF OF WISE'S MALNORMAL SPECIAL QUOTIENT THEOREM [J].
Agol, Ian ;
Groves, Daniel ;
Manning, Jason Fox .
FORUM OF MATHEMATICS PI, 2016, 4 :1-54
[2]  
Agol I, 2013, DOC MATH, V18, P1045
[3]   Residual finiteness, QCERF and fillings of hyperbolic groups [J].
Agol, Ian ;
Groves, Daniel ;
Manning, Jason Fox .
GEOMETRY & TOPOLOGY, 2009, 13 :1043-1073
[4]  
ARMSTRON.MA, 1965, PROC CAMB PHILOS S-M, V61, P639
[5]  
Bergeron N, 2012, AM J MATH, V134, P843
[6]   RELATIVELY HYPERBOLIC GROUPS [J].
Bowditch, B. H. .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2012, 22 (03)
[7]   Tight geodesics in the curve complex [J].
Bowditch, Brian H. .
INVENTIONES MATHEMATICAE, 2008, 171 (02) :281-300
[8]  
Bridson M., 1999, Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften, V319, DOI DOI 10.1007/978-3-662-12494-9
[9]   Relative hyperbolicity and Artin groups [J].
Charney, Ruth ;
Crisp, John .
GEOMETRIAE DEDICATA, 2007, 129 (01) :1-13
[10]   Ubiquitous quasi-Fuchsian surfaces in cusped hyperbolic 3-manifolds [J].
Cooper, Daryl ;
Futer, David .
GEOMETRY & TOPOLOGY, 2019, 23 (01) :241-298