Molecular insights on optimizing nanoporous carbon-based supercapacitors with various electrolytes

被引:3
作者
Lin, Xiaobo [1 ,2 ]
Tee, Shern R. [3 ]
Searles, Debra J. [3 ,4 ]
Cummings, Peter T. [1 ,2 ,5 ]
机构
[1] Vanderbilt Univ, Multiscale Modeling & Simulat Ctr, Nashville, TN USA
[2] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN USA
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld, Australia
[4] Univ Queensland, Sch Chem & Mol Biosci, Brisbane, Qld, Australia
[5] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh, Scotland
基金
澳大利亚研究理事会;
关键词
Nanoporous supercapacitor; Solvent-in-salt electrolyte; Performance optimization; Charging mechanism; IONIC-LIQUID; DYNAMICS; PERFORMANCE; WATER; CAPACITANCE; ELECTRODES; INTERFACES; ORIGIN;
D O I
10.1016/j.electacta.2023.143500
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Molecular dynamics (MD) simulations using the constant potential method (CPM) can provide nanoscale insight to explain and optimize supercapacitor charging dynamics and charge storage. We report CPM MD operando simulations for charging of nanoporous carbide-derived carbon supercapacitors with four distinct electrolytes, including ionic liquid (IL), mixed IL-solvent, and solvent-in-salt electrolytes. Instead of employing a coarse grained model, we used an all-atom model for the electrolytes, allowing us to uncover the essential effects of solvents on the charging mechanism. We find that the water-in-salt electrolyte, lithium bis(trifluoromethanesulfonyl)imide / water, leads to the greatest charge storage among the studied combinations and exhibits a significantly higher integral and differential capacitance on the negative electrode, associated with a strong cation-driven charging mechanism. Our simulations also demonstrate the varying contributions of the different electrode regions to supercapacitor performance, with an especially high local capacitance (up to-250 F/g) within the interfacial region of the electrodes. These molecular insights provide important guidance for optimizing supercapacitor performance by carefully tuning electrode nanostructure and electrolyte composition.
引用
收藏
页数:9
相关论文
共 60 条
[1]  
Abraham Mark James, 2015, SoftwareX, V1-2, P19, DOI [10.1016/j.softx.2015.06.001, 10.1016/j.softx.2015.06.001]
[2]   Simple data and workflow management with the signac framework [J].
Adorf, Carl S. ;
Dodd, Paul M. ;
Ramasubramani, Vyas ;
Glotzer, Sharon C. .
COMPUTATIONAL MATERIALS SCIENCE, 2018, 146 :220-229
[3]   ELECTRODE: An electrochemistry package for atomistic simulations [J].
Ahrens-Iwers, Ludwig J., V ;
Janssen, Mathijs ;
Tee, Shern R. ;
Meissner, Robert H. .
JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (08)
[4]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/nmat2448, 10.1038/NMAT2448]
[5]  
Azov VA, 2018, CHEM SOC REV, V47, P1250, DOI 10.1039/c7cs00547d
[6]   High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte [J].
Balducci, A. ;
Dugas, R. ;
Taberna, P. L. ;
Simon, P. ;
Plee, D. ;
Mastragostino, M. ;
Passerini, S. .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :922-927
[7]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[8]   Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes [J].
Bi, Sheng ;
Banda, Harish ;
Chen, Ming ;
Niu, Liang ;
Chen, Mingyu ;
Wu, Taizheng ;
Wang, Jiasheng ;
Wang, Runxi ;
Feng, Jiamao ;
Chen, Tianyang ;
Dinca, Mircea ;
Kornyshev, Alexei A. ;
Feng, Guang .
NATURE MATERIALS, 2020, 19 (05) :552-+
[9]   CL&P: A generic and systematic force field for ionic liquids modeling [J].
Canongia Lopes, Jose N. ;
Padua, Agilio A. H. .
THEORETICAL CHEMISTRY ACCOUNTS, 2012, 131 (03) :1-11
[10]   Water-in-salt electrolytes: An interfacial perspective [J].
Chen, Ming ;
Feng, Guang ;
Qiao, Rui .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2020, 47 :99-110