Quantum logical controlled-NOT gate in a lithium niobate-on-insulator photonic quantum walk

被引:10
作者
Chapman, Robert J. [1 ]
Hausler, Samuel [2 ]
Finco, Giovanni [1 ]
Kaufmann, Fabian [1 ]
Grange, Rachel [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Quantum Elect, Dept Phys, Opt Nanomat Grp, CH-8093 Zurich, Switzerland
[2] Univ Appl Sci & Arts Northwestern Switzerland, Inst Sensors & Elect, CH-5210 Windisch, Switzerland
基金
欧盟地平线“2020”; 瑞士国家科学基金会; 欧洲研究理事会;
关键词
quantum photonics; integrated photonics; quantum information; quantum logic gates; lithium niobate on insulator; ANDERSON LOCALIZATION; GENERATION; EFFICIENCY;
D O I
10.1088/2058-9565/ad0a48
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The two-qubit controlled-NOT gate is one of the central entangling operations in quantum information technology. The controlled-NOT gate for single photon qubits is normally realized as a network of five individual beamsplitters on six optical modes. Quantum walks (QWs) are an alternative photonic architecture involving arrays of coupled waveguides, which have been successful for investigating condensed matter physics, however, have not yet been applied to quantum logical operations. Here, we engineer the tight-binding Hamiltonian of an array of lithium niobate-on-insulator waveguides to experimentally demonstrate the two-qubit controlled-NOT gate in a QW. We measure the two-qubit transfer matrix with 0.938 +/- 0.003 fidelity, and we use the gate to generate entangled qubits with 0.945 +/- 0.002 fidelity by preparing the control photon in a superposition state. Our results highlight a new application for QWs that use a compact multi-mode interaction region to realize large multi-component quantum circuits.
引用
收藏
页数:9
相关论文
共 47 条
[1]  
Aspuru-Guzik A, 2012, NAT PHYS, V8, P285, DOI [10.1038/nphys2253, 10.1038/NPHYS2253]
[2]   Topological protection of biphoton states [J].
Blanco-Redondo, Andrea ;
Bell, Bryn ;
Oren, Dikla ;
Eggleton, Benjamin J. ;
Segev, Mordechai .
SCIENCE, 2018, 362 (6414) :568-+
[3]   Experimental perfect state transfer of an entangled photonic qubit [J].
Chapman, Robert J. ;
Santandrea, Matteo ;
Huang, Zixin ;
Corrielli, Giacomo ;
Crespi, Andrea ;
Yung, Man-Hong ;
Osellame, Roberto ;
Peruzzo, Alberto .
NATURE COMMUNICATIONS, 2016, 7
[4]   Low-loss fiber grating coupler on thin film lithium niobate platform [J].
Chen, Bin ;
Ruan, Ziliang ;
Fan, Xuancong ;
Wang, Zong ;
Liu, Jie ;
Li, Chijun ;
Chen, Kaixuan ;
Liu, Liu .
APL PHOTONICS, 2022, 7 (07)
[5]  
Chen PK, 2023, Nature Nanotechnology, V19
[6]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[7]   Optimal design for universal multiport interferometers [J].
Clements, William R. ;
Humphreys, Peter C. ;
Metcalf, Benjamin J. ;
Kolthammer, W. Steven ;
Walmsley, Ian A. .
OPTICA, 2016, 3 (12) :1460-1465
[8]  
Crespi A, 2013, NAT PHOTONICS, V7, P322, DOI [10.1038/nphoton.2013.26, 10.1038/NPHOTON.2013.26]
[9]   Two-photon quantum walk in a multimode fiber [J].
Defienne, Hugo ;
Barbieri, Marco ;
Walmsley, Ian A. ;
Smith, Brian J. ;
Gigan, Sylvain .
SCIENCE ADVANCES, 2016, 2 (01)
[10]   Quantum communication [J].
Gisin, Nicolas ;
Thew, Rob .
NATURE PHOTONICS, 2007, 1 (03) :165-171