ON SOBOLEV ORTHOGONAL POLYNOMIALS ON A TRIANGLE

被引:1
作者
Marriaga, Misael E. [1 ]
机构
[1] Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Madrid, Spain
关键词
APPROXIMATION; SPACES;
D O I
10.1090/proc/16142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the invariance of the triangle T-2 = {(x, y) is an element of R-2 : 0 <= x, y, 1-x-y} under the permutations of {x, y, 1-x-y} to construct and study two-variable orthogonal polynomial systems with respect to several distinct Sobolev inner products defined on T2. These orthogonal polynomials can be constructed from two sequences of univariate orthogonal polynomials. In particular, one of the two univariate sequences of polynomials is orthogonal with respect to a Sobolev inner product and the other is a sequence of classical Jacobi polynomials.
引用
收藏
页码:679 / 691
页数:13
相关论文
共 21 条
  • [1] Sobolev Orthogonal Polynomials on a Simplex
    Aktas, Rabia
    Xu, Yuan
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (13) : 3087 - 3131
  • [2] New steps on Sobolev orthogonality in two variables
    Bracciali, Cleonice F.
    Delgado, Antonia M.
    Fernandez, Lidia
    Perez, Teresa E.
    Pinar, Miguel A.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (04) : 916 - 926
  • [3] Polynomial approximation in Sobolev spaces on the unit sphere and the unit ball
    Dai, Feng
    Xu, Yuan
    [J]. JOURNAL OF APPROXIMATION THEORY, 2011, 163 (10) : 1400 - 1418
  • [4] Sobolev orthogonal polynomials on the unit ball via outward normal derivatives
    Delgado, Antonia M.
    Fernandez, Lidia
    Lubinsky, Doron S.
    Perez, Teresa E.
    Pinar, Miguel A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 440 (02) : 716 - 740
  • [5] Sobolev-type orthogonal polynomials on the unit ball
    Delgado, Antonia M.
    Perez, Teresa E.
    Pinar, Miguel A.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 94 - 106
  • [6] Sobolev Orthogonal Polynomials of Several Variables on Product Domains
    Duenas Ruiz, Herbert
    Salazar-Morales, Omar
    Pinar, Miguel
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [7] Sobolev orthogonal polynomials of high order in two variables defined on product domains
    Duenas Ruiz, Herbert
    Pinzon-Cortes, Natalia
    Salazar-Morales, Omar
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (12) : 988 - 1008
  • [8] Dunkl Charles F., 2014, Encyclopedia of Mathematics and its Applications, V155, DOI [DOI 10.1017/CBO9781107786134, 10.1017/cbo9781107786134]
  • [9] Sobolev orthogonal polynomials on product domains
    Fernandez, Lidia
    Marcellan, Francisco
    Perez, Teresa E.
    Pinar, Miguel A.
    Xu, Yuan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 284 : 202 - 215
  • [10] On Sobolev bilinear forms and polynomial solutions of second-order differential equations
    Garcia-Ardila, J. C.
    Marriaga, M. E.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (04)