Patient Graph Deep Learning to Predict Breast Cancer Molecular Subtype

被引:12
作者
Furtney, Isaac [1 ]
Bradley, Ray [2 ]
Kabuka, Mansur R. [3 ]
机构
[1] Univ Miami, Dept Elect & Comp Engn, Coral Gables, FL 33146 USA
[2] INFOTECH Soft Inc, Miami, FL 33131 USA
[3] Univ Miami, Coral Gables, FL 33146 USA
关键词
Graph neural network; multimodal machine learning; radiogenomics; COMPUTER-AIDED DETECTION; DIGITAL SCREENING MAMMOGRAPHY; RADIOGENOMIC ANALYSIS; PRECISION MEDICINE; HETEROGENEITY; PORTRAITS; DIAGNOSIS; ACCURACY; VISION; IMPACT;
D O I
10.1109/TCBB.2023.3290394
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Breast cancer is a heterogeneous disease consisting of a diverse set of genomic mutations and clinical characteristics. The molecular subtypes of breast cancer are closely tied to prognosis and therapeutic treatment options. We investigate using deep graph learning on a collection of patient factors from multiple diagnostic disciplines to better represent breast cancer patient information and predict molecular subtype. Our method models breast cancer patient data into a multi-relational directed graph with extracted feature embeddings to directly represent patient information and diagnostic test results. We develop a radiographic image feature extraction pipeline to produce vector representation of breast cancer tumors in DCE-MRI and an autoencoder-based genomic variant embedding method to map variant assay results to a low-dimensional latent space. We leverage related-domain transfer learning to train and evaluate a Relational Graph Convolutional Network to predict the probabilities of molecular subtypes for individual breast cancer patient graphs. Our work found that utilizing information from multiple multimodal diagnostic disciplines improved the model's prediction results and produced more distinct learned feature representations for breast cancer patients. This research demonstrates the capabilities of graph neural networks and deep learning feature representation to perform multimodal data fusion and representation in the breast cancer domain.
引用
收藏
页码:3117 / 3127
页数:11
相关论文
共 67 条
  • [1] American Cancer Society, 2022, CANC FACTS FIG
  • [2] AACR Project GENIE: Powering Precision Medicine through an International Consortium
    Andre, Fabrice
    Arnedos, Monica
    Baras, Alexander S.
    Baselga, Jose
    Bedard, Philippe L.
    Berger, Michael F.
    Bierkens, Mariska
    Calvo, Fabien
    Cerami, Ethan
    Chakravarty, Debyani
    Dang, Kristen K.
    Davidson, Nancy E.
    Del Vecchio, Fitz Catherine
    Dogan, Semih
    DuBois, Raymond N.
    Ducar, Matthew D.
    Futreal, P. Andrew
    Gao Jianjiong
    Garcia, Francisco
    Gardos, Stu
    Gocke, Christopher D.
    Gross, Benjamin E.
    Guinney, Justin
    Heins, Zachary J.
    Hintzen, Stephanie
    Horlings, Hugo
    Hudecek, Jan
    Hyman, David M.
    Kamel-Reid, Suzanne
    Kandoth, Cyriac
    Kinyua, Walter
    Kumari, Priti
    Kundra, Ritika
    Ladanyi, Marc
    Lefebvre, Celine
    LeNoue-Newton, Michele L.
    Lepisto, Eva M.
    Levy, Mia A.
    Lindeman, Neal, I
    Lindsay, James
    Liu, David
    Lu Zhibin
    MacConaill, Laura E.
    Ian, Maurer
    Maxwell, David S.
    Meijer, Gerrit A.
    Meric-Bernstam, Funda
    Micheel, Christine M.
    Miller, Clinton
    Mills, Gordon
    [J]. CANCER DISCOVERY, 2017, 7 (08) : 818 - 831
  • [3] A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets
    Antropova, Natalia
    Huynh, Benjamin Q.
    Giger, Maryellen L.
    [J]. MEDICAL PHYSICS, 2017, 44 (10) : 5162 - 5171
  • [4] Radiomics with artificial intelligence for precision medicine in radiation therapy
    Arimura, Hidetaka
    Soufi, Mazen
    Kamezawa, Hidemi
    Ninomiya, Kenta
    Yamada, Masahiro
    [J]. JOURNAL OF RADIATION RESEARCH, 2019, 60 (01) : 150 - 157
  • [5] Multi-Modal Classification for Human Breast Cancer Prognosis Prediction: Proposal of Deep-Learning Based Stacked Ensemble Model
    Arya, Nikhilanand
    Saha, Sriparna
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (02) : 1032 - 1041
  • [6] Precision medicine in breast cancer: reality or utopia?
    Bettaieb, Ali
    Paul, Catherine
    Plenchette, Stephanie
    Shan, Jingxuan
    Chouchane, Lotfi
    Ghiringhelli, Francois
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2017, 15
  • [7] Artificial intelligence in cancer imaging: Clinical challenges and applications
    Bi, Wenya Linda
    Hosny, Ahmed
    Schabath, Matthew B.
    Giger, Maryellen L.
    Birkbak, Nicolai J.
    Mehrtash, Alireza
    Allison, Tavis
    Arnaout, Omar
    Abbosh, Christopher
    Dunn, Ian F.
    Mak, Raymond H.
    Tamimi, Rulla M.
    Tempany, Clare M.
    Swanton, Charles
    Hoffmann, Udo
    Schwartz, Lawrence H.
    Gillies, Robert J.
    Huang, Raymond Y.
    Aerts, Hugo J. W. L.
    [J]. CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) : 127 - 157
  • [8] Early Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer Sonography Using Siamese Convolutional Neural Networks
    Byra, Michal
    Dobruch-Sobczak, Katarzyna
    Klimonda, Ziemowit
    Piotrzkowska-Wroblewska, Hanna
    Litniewski, Jerzy
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (03) : 797 - 805
  • [9] The Impact of Normalization Approaches to Automatically Detect Radiogenomic Phenotypes Characterizing Breast Cancer Receptors Status
    Castaldo, Rossana
    Pane, Katia
    Nicolai, Emanuele
    Salvatore, Marco
    Franzese, Monica
    [J]. CANCERS, 2020, 12 (02)
  • [10] COMPUTER-AIDED DETECTION OF MAMMOGRAPHIC MICROCALCIFICATIONS - PATTERN-RECOGNITION WITH AN ARTIFICIAL NEURAL-NETWORK
    CHAN, HP
    LO, SCB
    SAHINER, B
    LAM, KL
    HELVIE, MA
    [J]. MEDICAL PHYSICS, 1995, 22 (10) : 1555 - 1567