Application and future perspectives of gastric cancer technology based on artificial intelligence

被引:2
作者
Wang, Jyun-Guo [1 ,2 ]
机构
[1] Tzu Chi Univ, Dept Med Informat, Hualien, Taiwan
[2] Tzu Chi Univ, Dept Med Informat, Zhongyang Rd,Sec 3, Hualien 701, Taiwan
来源
TZU CHI MEDICAL JOURNAL | 2023年 / 35卷 / 02期
关键词
Artificial intelligence; Gastric cancer; Image-based diagnosis; DIAGNOSIS; IMAGES; ENDOSCOPY;
D O I
10.4103/tcmj.tcmj_305_22
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Gastric cancer is among the most common cancers and the second-leading cause of death globally. A variety of artificial intelligence (AI) applications have been developed to facilitate the image-based diagnosis of gastric cancer through pathological analysis, endoscopy, and computerized tomography. This article provides an overview of these AI applications as well as suggestions pertaining to future developments in this field and their application in clinical practice.
引用
收藏
页码:148 / 151
页数:4
相关论文
共 28 条
[1]   Computer assisted gastric abnormalities detection using hybrid texture descriptors for chromoendoscopy images [J].
Ali, Hussam ;
Yasmin, Mussarat ;
Sharif, Muhammad ;
Rehmani, Mubashir Husain .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 157 :39-47
[2]   The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging [J].
Amin, Mahul B. ;
Greene, Frederick L. ;
Edge, Stephen B. ;
Compton, Carolyn C. ;
Gershenwald, Jeffrey E. ;
Brookland, Robert K. ;
Meyer, Laura ;
Gress, Donna M. ;
Byrd, David R. ;
Winchester, David P. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2017, 67 (02) :93-99
[3]  
[Anonymous], 2003, Artificial Intelligence: A Modern Approach
[4]   In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques [J].
Bergholt, Mads Sylvest ;
Zheng, Wei ;
Lin, Kan ;
Ho, Khek Yu ;
Teh, Ming ;
Yeoh, Khay Guan ;
So, Jimmy Bok Yan ;
Huang, Zhiwei .
INTERNATIONAL JOURNAL OF CANCER, 2011, 128 (11) :2673-2680
[5]   Comparison of endoscopic ultrasonography and conventional endoscopy for prediction of depth of tumor invasion in early gastric cancer [J].
Choi, J. ;
Kim, S. G. ;
Im, J. P. ;
Kim, J. S. ;
Jung, H. C. ;
Song, I. S. .
ENDOSCOPY, 2010, 42 (09) :705-713
[6]   Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination [J].
Duraipandian, Shiyamala ;
Bergholt, Mads Sylvest ;
Zheng, Wei ;
Ho, Khek Yu ;
Teh, Ming ;
Yeoh, Khay Guan ;
So, Jimmy Bok Yan ;
Shabbir, Asim ;
Huang, Zhiwei .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (08)
[7]   Deep neural network-assisted computed tomography diagnosis of metastatic lymph nodes from gastric cancer [J].
Gao, Yuan ;
Zhang, Zheng-Dong ;
Li, Shuo ;
Guo, Yu-Ting ;
Wu, Qing-Yao ;
Liu, Shu-Hao ;
Yang, Shu-Jian ;
Ding, Lei ;
Zhao, Bao-Chun ;
Li, Shuai ;
Lu, Yun .
CHINESE MEDICAL JOURNAL, 2019, 132 (23) :2804-2811
[8]   Deep-learning based detection of gastric precancerous conditions [J].
Guimaraes, Pedro ;
Keller, Andreas ;
Fehlmann, Tobias ;
Lammert, Frank ;
Casper, Markus .
GUT, 2020, 69 (01) :4-6
[9]   Retrospective imaging studies of gastric cancer Study protocol clinical trial (SPIRIT Compliant) [J].
Huang, Zixing ;
Liu, Dan ;
Chen, Xinzu ;
Yu, Pengxin ;
Wu, Jiangfen ;
Song, Bin ;
Hu, Jiankun ;
Wu, Bing .
MEDICINE, 2020, 99 (08)
[10]   Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours [J].
Iizuka, Osamu ;
Kanavati, Fahdi ;
Kato, Kei ;
Rambeau, Michael ;
Arihiro, Koji ;
Tsuneki, Masayuki .
SCIENTIFIC REPORTS, 2020, 10 (01)