The Association of Metabolic Brain MRI, Amyloid PET, and Clinical Factors: A Study of Alzheimer's Disease and Normal Controls From the Open Access Series of Imaging Studies Dataset

被引:4
作者
Matsushita, Shu [1 ]
Tatekawa, Hiroyuki [1 ,3 ]
Ueda, Daiju [1 ,2 ]
Takita, Hirotaka [1 ]
Horiuchi, Daisuke [1 ]
Tsukamoto, Taro [1 ]
Shimono, Taro [1 ]
Miki, Yukio [1 ]
机构
[1] Osaka Metropolitan Univ, Dept Diagnost & Intervent Radiol, Grad Sch Med, Osaka, Japan
[2] Osaka Metropolitan Univ, Ctr Hlth Sci Innovat, Smart Life Sci Lab, Osaka, Japan
[3] Osaka Metropolitan Univ, Dept Diagnost & Intervent Radiol, Grad Sch Med, Asahi machi, Abeno ku, Osaka 5458585, Japan
关键词
brain temperature; DTI; ALPS index; glymphatic system; amyloid PET; GLYMPHATIC SYSTEM ACTIVITY; DIFFUSION; BETA; TEMPERATURE; THERMOMETRY; AGE;
D O I
10.1002/jmri.28892
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Although brain activities in Alzheimer's disease (AD) might be evaluated MRI and PET, the relationships between brain temperature (BT), the index of diffusivity along the perivascular space (ALPS index), and amyloid deposition in the cerebral cortex are still unclear. Purpose: To investigate the relationship between metabolic imaging measurements and clinical information in patients with AD and normal controls (NCs). Study Type: Retrospective analysis of a prospective dataset. Population: 58 participants (78.3 +/- 6.8 years; 30 female): 29 AD patients and 29 age- and sex-matched NCs from the Open Access Series of Imaging Studies dataset. Field Strength/Sequence: 3T; T1-weighted magnetization-prepared rapid gradient-echo, diffusion tensor imaging with 64 directions, and dynamic F-18-florbetapir PET. Assessment: Imaging metrics were compared between AD and NCs. These included BT calculated by the diffusivity of the lateral ventricles, ALPS index that reflects the glymphatic system, the mean standardized uptake value ratio (SUVR) of amyloid PET in the cerebral cortex and clinical information, such as age, sex, and MMSE. Statistical Tests: Pearson's or Spearman's correlation and multiple linear regression analyses. P values < 0.05 were defined as statistically significant. Results: Significant positive correlations were found between BT and ALPS index (r = 0.44 for NCs), while significant negative correlations were found between age and ALPS index (r(s) = -0.43 for AD and -0.47 for NCs). The SUVR of amyloid PET was not significantly associated with BT (P = 0.81 for AD and 0.21 for NCs) or ALPS index (P = 0.10 for AD and 0.52 for NCs). In the multiple regression analysis, age was significantly associated with BT, while age, sex, and presence of AD were significantly associated with the ALPS index. Data Conclusion: Impairment of the glymphatic system measured using MRI was associated with lower BT and aging.
引用
收藏
页码:1341 / 1348
页数:8
相关论文
共 35 条
[1]   DWI-based MR thermometry: could it discriminate Alzheimer's disease from mild cognitive impairment and healthy subjects? [J].
Asfuroglu, Berrak Barutcu ;
Topkan, Tugberk Andac ;
Kaydu, Nesrin Erdogan ;
Sakai, Koji ;
Oner, Ali Yusuf ;
Karaman, Yahya ;
Yamada, Kei ;
Tali, E. Turgut .
NEURORADIOLOGY, 2022, 64 (10) :1979-1987
[2]   White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction [J].
Beck, Dani ;
de Lange, Ann-Marie G. ;
Maximov, Ivan I. ;
Richard, Genevieve ;
Andreassen, Ole A. ;
Nordvik, Jan E. ;
Westlye, Lars T. .
NEUROIMAGE, 2021, 224
[3]   Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias [J].
Chetelat, Gael ;
Arbizu, Javier ;
Barthel, Henryk ;
Garibotto, Valentina ;
Law, Ian ;
Morbelli, Silvia ;
van de Giessen, Elsmarieke ;
Agosta, Federica ;
Barkhof, Frederik ;
Brooks, David J. ;
Carrillo, Maria C. ;
Dubois, Bruno ;
Fjell, Anders M. ;
Frisoni, Giovanni B. ;
Hansson, Oskar ;
Herholz, Karl ;
Hutton, Brian F. ;
Jack, Clifford R., Jr. ;
Lammertsma, Adriaan A. ;
Landau, Susan M. ;
Minoshima, Satoshi ;
Nobili, Flavio ;
Nordberg, Agneta ;
Ossenkoppele, Rik ;
Oyen, Wim J. G. ;
Perani, Daniela ;
Rabinovici, Gil D. ;
Scheltens, Philip ;
Villemagne, Victor L. ;
Zetterberg, Henrik ;
Drzezga, Alexander .
LANCET NEUROLOGY, 2020, 19 (11) :951-962
[4]  
Clark CM, 2012, LANCET NEUROL, V11, P669, DOI 10.1016/S1474-4422(12)70142-4
[5]   Use of Florbetapir-PET for Imaging β-Amyloid Pathology [J].
Clark, Christopher M. ;
Schneider, Julie A. ;
Bedell, Barry J. ;
Beach, Thomas G. ;
Bilker, Warren B. ;
Mintun, Mark A. ;
Pontecorvo, Michael J. ;
Hefti, Franz ;
Carpenter, Alan P. ;
Flitter, Matthew L. ;
Krautkramer, Michael J. ;
Kung, Hank F. ;
Coleman, R. Edward ;
Doraiswamy, P. Murali ;
Fleisher, Adam S. ;
Sabbagh, Marwan N. ;
Sadowsky, Carl H. ;
Reiman, P. Eric M. ;
Zehntner, Simone P. ;
Skovronsky, Daniel M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2011, 305 (03) :275-283
[6]   AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages [J].
Cox, RW .
COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (03) :162-173
[7]   Amyloid Hypothesis: The Emperor's New Clothes? [J].
Hoilund-Carlsen, Poul F. ;
Barrio, Jorge R. ;
Werner, Tom J. ;
Newberg, Andrew ;
Alavi, Abass .
JOURNAL OF ALZHEIMERS DISEASE, 2020, 78 (04) :1363-1366
[8]   Magnetic Resonance Images Implicate That Glymphatic Alterations Mediate Cognitive Dysfunction in Alzheimer Disease [J].
Hsu, Jung-Lung ;
Wei, Yi-Chia ;
Toh, Cheng Hong ;
Hsiao, Ing-Tsung ;
Lin, Kun-Ju ;
Yen, Tzu-Chen ;
Liao, Ming-Feng ;
Ro, Long-Sun .
ANNALS OF NEUROLOGY, 2023, 93 (01) :164-174
[9]   Biomarker Modeling of Alzheimer's Disease [J].
Jack, Clifford R., Jr. ;
Holtzman, David M. .
NEURON, 2013, 80 (06) :1347-1358
[10]  
Johnson KA, 2013, ALZHEIMERS DEMENT, V9, pE1, DOI [10.1016/j.jalz.2013.06.001, 10.1016/j.jalz.2012.10.007, 10.1016/j.jalz.2013.01.002]