α-NiS/g-C3N4 Nanocomposites for Photocatalytic Hydrogen Evolution and Degradation of Tetracycline Hydrochloride

被引:15
|
作者
Qi, Huajin [1 ,2 ,3 ]
Wang, Chenyu [2 ]
Shen, Luping [2 ]
Wang, Hongmei [2 ]
Lian, Yuan [3 ]
Zhang, Huanxia [3 ]
Ma, Hongxia [2 ]
Zhang, Yong [1 ]
Zhang, Jin Zhong [4 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Text Sci & Engn, Key Lab Adv Text Mat & Mfg Technol, Minist Educ, Hangzhou 310018, Peoples R China
[2] Jiaxing Univ, Coll Biol Chem Sci & Engn, Jiaxing Key Lab Mol Recognit & Sensing, Jiaxing 314001, Peoples R China
[3] Jiaxing Univ, Coll Mat & Text Engn, Jiaxing 314001, Peoples R China
[4] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
关键词
photocatalysis; g-C3N4; surface modification; photodegradation; hydrogen evolution; VISIBLE-LIGHT; C3N4; NANOSHEETS; CARBON NITRIDE; Z-SCHEME; G-C3N4; COCATALYST; PHOTODEPOSITION; HETEROJUNCTION; CONSTRUCTION; VACANCIES;
D O I
10.3390/catal13060983
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
& alpha;-NiS/g-C3N4 nanocomposites were synthesized and used for photocatalytic hydrogen (H-2) evolution and tetracycline hydrochloride (TC) degradation. The fabricated nanocomposites were characterized by XRD, XPS, SEM, TEM, UV-vis DRS, TRPL, and PEC measurements. Photocatalytic studies show that the hydrogen generation rate of the 15%-& alpha;-NiS/g-C3N4 nanocomposite reaches 4025 & mu;mol & BULL;g(-1)& BULL;h(-1) and TC degradation rate 64.6% within 120 min, both of which are higher than that of g-C3N4. The enhanced performance of the nanocomposite is attributed to the formation of a heterojunction between & alpha;-NiS and g-C3N4 that enhances visible light absorption, promotes the separation and transfer of charges, and inhibits the recombination of carriers. The photocatalytic mechanism of the & alpha;-NiS/g-C3N4 heterojunction nanocomposite is discussed in terms of relevant energy levels and charge transfer processes.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Fabrication of ZnO/g-C3N4 nanocomposites for enhanced visible light driven photocatalytic activity
    Chidhambaram, N.
    Ravichandran, K.
    MATERIALS RESEARCH EXPRESS, 2017, 4 (07):
  • [32] Accelerating Photocatalytic Hydrogen Production and Pollutant Degradation by Functionalizing g-C3N4 With SnO2
    Zada, Amir
    Khan, Muhammad
    Qureshi, Muhammad Nasimullah
    Liu, Shu-yuan
    Wang, Ruidan
    FRONTIERS IN CHEMISTRY, 2020, 7
  • [33] Fabrication of La2O3/g-C3N4 Heterojunction with Enhanced Photocatalytic Performance of Tetracycline Hydrochloride
    Zhu, Zhengru
    Xia, Haiwen
    Wu, Rina
    Cao, Yongqiang
    Li, Hong
    CRYSTALS, 2021, 11 (11)
  • [34] Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation
    Jiang, Longbo
    Yuan, Xingzhong
    Zeng, Guangming
    Liang, Jie
    Wu, Zhibin
    Yu, Hanbo
    Mo, Dan
    Wang, Hou
    Xiao, Zhihua
    Zhou, Chengyun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 536 : 17 - 29
  • [35] CdS and Ag synergistically improved the performance of g-C3N4 on visible-light photocatalytic degradation of pollution
    Wang, Junhong
    Shao, Bin Liu Xianzhao
    Ji, Xiaohui
    Tian, Guanghui
    Ge, Hongguang
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (32) : 48348 - 48357
  • [36] Ag-AgBr/g-C3N4/ZIF-8 prepared with ionic liquid as template for highly efficient photocatalytic hydrogen evolution under visible light
    Dai, Xiaojun
    Feng, Sheng
    Zheng, Wei
    Wu, Wei
    Zhou, Yun
    Ye, Zhiwei
    Cao, Xun
    Wang, Yang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (19) : 10603 - 10615
  • [37] Dual-channel charge transfer over g-C3N4/g-C3N4/bismuth-based halide perovskite composite for improving photocatalytic degradation of tetracycline hydrochloride
    Nguyen, Vinh Huu
    Nong, Linh Xuan
    Nguyen, Oanh T. K.
    Pham, Ai Le Hoang
    Lee, Taeyoon
    Nguyen, Trinh Duy
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 965
  • [38] In situ synthesis of Cu3P/g-C3N4 heterojunction with superior photocatalytic hydrogen evolution
    Sun, Wenjuan
    Jia, Jia
    Jin, Chenyang
    Zhang, Xiaoli
    Liu, Enzhou
    Fan, Jun
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (46)
  • [39] NiFe2O4/g-C3N4 heterostructure with an enhanced ability for photocatalytic degradation of tetracycline hydrochloride and antibacterial performance
    Liu, Shu-yuan
    Zada, Amir
    Yu, Xinyuan
    Liu, Fanzhe
    Jin, Ge
    CHEMOSPHERE, 2022, 307
  • [40] Ni, Co-Based Selenide Anchored g-C3N4 for Boosting Photocatalytic Hydrogen Evolution
    Jin, Zhiliang
    Li, Yanbing
    Hao, Xuqiang
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (10)