Graph convolutional dynamic recurrent network with attention for traffic forecasting

被引:5
|
作者
Wu, Jiagao [1 ,2 ]
Fu, Junxia [1 ,2 ]
Ji, Hongyan [1 ,2 ]
Liu, Linfeng [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Big Data Secur & Intelligent Proc, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph convolutional network; Dynamic gate recurrent unit; Attention mechanism; Traffic flow forecasting;
D O I
10.1007/s10489-023-04621-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic forecasting is a typical spatio-temporal graph modeling problem, which has become one of the key technical issues in modern intelligent transportation systems. However, existing methods cannot capture the long-range spatial and temporal characteristics very well because of the complexity and heterogeneity of the traffic flows. In this paper, a new deep learning framework called Graph Convolutional Dynamic Recurrent Network with Attention (GCDRNA) is proposed to predict the traffic state in the traffic network. GCDRNA mainly consists of two components, which are Graph Convolutional with Attention (GCA) block and Dynamic GRU with Attention (DGRUA) block. GCA block can capture both global and local spatial correlations of the traffic flows by k-hop GC, similarity GC and spatial attention modules. DGRUA block captures the long-term temporal correlation of the traffic flows by Dynamic GRU (DGRU) and Node Attention Unit (NAU) modules. Experimental results show that GCDRNA achieves the best prediction performance compared with other baseline models on two public real-world traffic datasets.
引用
收藏
页码:22002 / 22016
页数:15
相关论文
共 50 条
  • [1] Graph convolutional dynamic recurrent network with attention for traffic forecasting
    Jiagao Wu
    Junxia Fu
    Hongyan Ji
    Linfeng Liu
    Applied Intelligence, 2023, 53 : 22002 - 22016
  • [2] A Decomposition Dynamic graph convolutional recurrent network for traffic forecasting
    Weng, Wenchao
    Fan, Jin
    Wu, Huifeng
    Hu, Yujie
    Tian, Hao
    Zhu, Fu
    Wu, Jia
    PATTERN RECOGNITION, 2023, 142
  • [3] Attention-Based Multiple Graph Convolutional Recurrent Network for Traffic Forecasting
    Liu, Lu
    Cao, Yibo
    Dong, Yuhan
    SUSTAINABILITY, 2023, 15 (06)
  • [4] Multi-scale attention graph convolutional recurrent network for traffic forecasting
    Xiong, Liyan
    Hu, Zhuyi
    Yuan, Xinhua
    Ding, Weihua
    Huang, Xiaohui
    Lan, Yuanchun
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 3277 - 3291
  • [5] Decomposition dynamic multi-graph convolutional recurrent network for traffic forecasting
    Hu, Longfei
    Wei, Lai
    Lin, Yeqing
    APPLIED INTELLIGENCE, 2025, 55 (07)
  • [6] Position-Aware Dynamic Graph Convolutional Recurrent Network for Traffic Forecasting
    Mao, Rui
    Zhuang, Xufei
    Gao, Xudong
    Zhang, Haitao
    Ren, Qing-Dao-Er-Ji
    Shi, Bao
    Ji, Yatu
    Wu, Nier
    PRICAI 2024: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2025, 15281 : 416 - 428
  • [7] DAGCRN: Graph convolutional recurrent network for traffic forecasting with dynamic adjacency matrix
    Shi, Zheng
    Zhang, Yingjun
    Wang, Jingping
    Qin, Jiahu
    Liu, Xiaoqian
    Yin, Hui
    Huang, Hua
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [8] Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting
    Bai, Lei
    Yao, Lina
    Li, Can
    Wang, Xianzhi
    Wang, Can
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [9] Multi-scale fusion dynamic graph convolutional recurrent network for traffic forecasting
    Junbi Xiao
    Wenjing Zhang
    Wenchao Weng
    Yuhao Zhou
    Yunhuan Cong
    Cluster Computing, 2025, 28 (3)
  • [10] Adaptive Graph Fusion Convolutional Recurrent Network for Traffic Forecasting
    Xu, Yan
    Lu, Yu
    Ji, Changtao
    Zhang, Qiyuan
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (13) : 11465 - 11475