FUNCTIONAL GRAPHS OF FAMILIES OF QUADRATIC POLYNOMIALS

被引:1
|
作者
Mans, Bernard [1 ]
Sha, Min [2 ]
Shparlinski, Igor E. [3 ]
Sutantyo, Daniel [1 ]
机构
[1] Macquarie Univ, Sch Comp, Sydney, NSW 2109, Australia
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[3] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Finite field; functional graph; graph leaves; quadratic polynomial; elliptic curve; ELLIPTIC-CURVES; RATIONAL MAPS; ITERATION; MODULO; NUMBER; PERIODS; POINTS; FIELD;
D O I
10.1090/mcom/3838
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study functional graphs generated by several quadratic poly-nomials, acting simultaneously on a finite field of odd characteristic. We obtain several results about the number of leaves in such graphs. In particular, in the case of graphs generated by three polynomials, we relate the distribution of leaves to the Sato-Tate distribution of Frobenius traces of elliptic curves. We also present extensive numerical results which we hope may shed some light on the distribution of leaves for larger families of polynomials.
引用
收藏
页码:2307 / 2331
页数:25
相关论文
共 50 条
  • [31] Quadratic-Like Dynamics of Cubic Polynomials
    Blokh, Alexander
    Oversteegen, Lex
    Ptacek, Ross
    Timorin, Vladlen
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (03) : 733 - 749
  • [32] IRREDUCIBILITY OF ITERATES OF POST-CRITICALLY FINITE QUADRATIC POLYNOMIALS OVER Q
    Goksel, Vefa
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (07) : 2155 - 2174
  • [33] On the value set of small families of polynomials over a finite field, I
    Cesaratto, Eda
    Matera, Guillermo
    Perez, Mariana
    Privitelli, Melina
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 124 : 203 - 227
  • [34] The distribution of factorization patterns on linear families of polynomials over a finite field
    Cesaratto, Eda
    Matera, Guillermo
    Perez, Mariana
    COMBINATORICA, 2017, 37 (05) : 805 - 836
  • [35] On the value set of small families of polynomials over a finite field, II
    Matera, Guillermo
    Perez, Mariana
    Privitelli, Melina
    ACTA ARITHMETICA, 2014, 165 (02) : 141 - 179
  • [36] HERMITE INTERPOLATION ASSOCIATED WITH CERTAIN QUADRATIC POLYNOMIALS IN Rn
    Cuong, Le Ngoc
    Dieu, Nguyen Quang
    Van Manh, Phung
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (03) : 725 - 736
  • [37] No hyperbolic sets in J∞ for infinitely renormalizable quadratic polynomials
    Levin, Genadi
    Przytycki, Feliks
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 251 (02) : 635 - 656
  • [38] Hausdorff dimension 2 for Julia sets of quadratic polynomials
    Stefan-M. Heinemann
    Bernd O. Stratmann
    Mathematische Zeitschrift, 2001, 237 : 571 - 583
  • [39] Hausdorff dimension 2 for Julia sets of quadratic polynomials
    Heinemann, SM
    Stratmann, BO
    MATHEMATISCHE ZEITSCHRIFT, 2001, 237 (03) : 571 - 583
  • [40] Universal torsors and values of quadratic polynomials represented by norms
    Derenthal, Ulrich
    Smeets, Arne
    Wei, Dasheng
    MATHEMATISCHE ANNALEN, 2015, 361 (3-4) : 1021 - 1042