FUNCTIONAL GRAPHS OF FAMILIES OF QUADRATIC POLYNOMIALS

被引:1
|
作者
Mans, Bernard [1 ]
Sha, Min [2 ]
Shparlinski, Igor E. [3 ]
Sutantyo, Daniel [1 ]
机构
[1] Macquarie Univ, Sch Comp, Sydney, NSW 2109, Australia
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[3] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Finite field; functional graph; graph leaves; quadratic polynomial; elliptic curve; ELLIPTIC-CURVES; RATIONAL MAPS; ITERATION; MODULO; NUMBER; PERIODS; POINTS; FIELD;
D O I
10.1090/mcom/3838
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study functional graphs generated by several quadratic poly-nomials, acting simultaneously on a finite field of odd characteristic. We obtain several results about the number of leaves in such graphs. In particular, in the case of graphs generated by three polynomials, we relate the distribution of leaves to the Sato-Tate distribution of Frobenius traces of elliptic curves. We also present extensive numerical results which we hope may shed some light on the distribution of leaves for larger families of polynomials.
引用
收藏
页码:2307 / 2331
页数:25
相关论文
共 50 条
  • [21] COMMON PREPERIODIC POINTS FOR QUADRATIC POLYNOMIALS
    Demarco, Laura
    Krieger, Holly
    Ye, Hexi
    JOURNAL OF MODERN DYNAMICS, 2022, 18 : 363 - 413
  • [22] Simultaneously preperiodic integers for quadratic polynomials
    Huguin, Valentin
    NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 363 - 378
  • [23] A Refined Conjecture for Factorizations of Iterates of Quadratic Polynomials over Finite Fields
    Goksel, Vefa
    Xia, Shixiang
    Boston, Nigel
    EXPERIMENTAL MATHEMATICS, 2015, 24 (03) : 304 - 311
  • [24] Intersecting families of graphs of functions over a finite field
    Aguglia, Angela
    Csajbok, Bence
    Weiner, Zsuzsa
    ARS MATHEMATICA CONTEMPORANEA, 2024, 24 (01)
  • [25] Mating Non-Renormalizable Quadratic Polynomials
    Magnus Aspenberg
    Michael Yampolsky
    Communications in Mathematical Physics, 2009, 287
  • [26] Mating Non-Renormalizable Quadratic Polynomials
    Aspenberg, Magnus
    Yampolsky, Michael
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (01) : 1 - 40
  • [27] Spectrum and pseudospectrum for quadratic polynomials in Ginibre matrices
    Cook, Nicholas A.
    Guionnet, Alice
    Husson, Jonathan
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (04): : 2284 - 2320
  • [28] On the Tutte and Matching Polynomials for Complete Graphs
    Kotek, Tomer
    Makowsky, Johann A.
    FUNDAMENTA INFORMATICAE, 2022, 186 (1-4) : 155 - 173
  • [29] On the average number of divisors of reducible quadratic polynomials
    Lapkova, Kostadinka
    JOURNAL OF NUMBER THEORY, 2017, 180 : 710 - 729
  • [30] SQUARE-FREE VALUES OF QUADRATIC POLYNOMIALS
    Friedlander, J. B.
    Iwaniec, H.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 : 385 - 392