Critical slowing down in sudden quench dynamics

被引:4
作者
Dag, Ceren B. [1 ,2 ]
Wang, Yidan [2 ]
Uhrich, Philipp [3 ,4 ]
Na, Xuesen [5 ]
Halimeh, Jad C. [3 ,4 ]
机构
[1] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA
[3] CNR INO, Pitaevskii BEC Ctr, I-38123 Trento, Italy
[4] Univ Trento, Dipartimento Fis, I-38123 Trento, Italy
[5] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
基金
欧洲研究理事会;
关键词
QUANTUM PHASE-TRANSITION; ENTANGLEMENT; GAS;
D O I
10.1103/PhysRevB.107.L121113
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We reveal a prethermal dynamical regime upon suddenly quenching to the vicinity of a quantum phase transition in the time evolution of one-dimensional spin chains. The prethermal regime is analytically found to be self-similar and its duration is governed by the ground-state energy gap. Based on analytical insights and numerical evidence, we show that this dynamical regime universally exists independently of the location of the probe site, the presence of weak interactions, or the initial state. The resulting prethermal dynamics leads to an out-of-equilibrium scaling function of the order parameter in the vicinity of the transition. Our theory suggests that sudden quench dynamics, besides probing quantum phase transitions, may give rise to a universal critical slowing down near the critical point.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms [J].
Greiner, M ;
Mandel, O ;
Esslinger, T ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 415 (6867) :39-44
[22]   Dynamical quantum phase transitions in the random field Ising model [J].
Gurarie, Victor .
PHYSICAL REVIEW A, 2019, 100 (03)
[23]   Signatures of Quantum Phase Transitions after Quenches in Quantum Chaotic One-Dimensional Systems [J].
Haldar, Asmi ;
Mallayya, Krishnanand ;
Heyl, Markus ;
Pollmann, Frank ;
Rigol, Marcos ;
Das, Arnab .
PHYSICAL REVIEW X, 2021, 11 (03)
[24]   Dynamical Quantum Phase Transitions in the Transverse-Field Ising Model [J].
Heyl, M. ;
Polkovnikov, A. ;
Kehrein, S. .
PHYSICAL REVIEW LETTERS, 2013, 110 (13)
[25]   Detecting Equilibrium and Dynamical Quantum Phase Transitions in Ising Chains via Out-of-Time-Ordered Correlators [J].
Heyl, Markus ;
Pollmann, Frank ;
Dora, Balazs .
PHYSICAL REVIEW LETTERS, 2018, 121 (01)
[26]   Non-equilibrium quench dynamics in quantum quasicrystals [J].
Igloi, Ferenc ;
Roosz, Gergo ;
Lin, Yu-Cheng .
NEW JOURNAL OF PHYSICS, 2013, 15
[27]   Quantum Relaxation after a Quench in Systems with Boundaries [J].
Igloi, Ferenc ;
Rieger, Heiko .
PHYSICAL REVIEW LETTERS, 2011, 106 (03)
[28]   Measuring entanglement entropy in a quantum many-body system [J].
Islam, Rajibul ;
Ma, Ruichao ;
Preiss, Philipp M. ;
Tai, M. Eric ;
Lukin, Alexander ;
Rispoli, Matthew ;
Greiner, Markus .
NATURE, 2015, 528 (7580) :77-83
[29]   Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System [J].
Jurcevic, P. ;
Shen, H. ;
Hauke, P. ;
Maier, C. ;
Brydges, T. ;
Hempel, C. ;
Lanyon, B. P. ;
Heyl, M. ;
Blatt, R. ;
Roos, C. F. .
PHYSICAL REVIEW LETTERS, 2017, 119 (08)
[30]   Universal equilibrium scaling functions at short times after a quench [J].
Karl, Markus ;
Cakir, Halil ;
Halimeh, Jad C. ;
Oberthaler, Markus K. ;
Kastner, Michael ;
Gasenzer, Thomas .
PHYSICAL REVIEW E, 2017, 96 (02)