Longitudinal canonical correlation analysis

被引:3
作者
Lee, Seonjoo [1 ,2 ,4 ]
Choi, Jongwoo [1 ]
Fang, Zhiqian [1 ]
Bowman, F. DuBois [3 ]
机构
[1] New York State Psychiat Inst & Hosp, Mental Hlth Data Sci, New York, NY USA
[2] Columbia Univ, Dept Biostat & Psychiat, New York, NY USA
[3] Univ Michigan, Dept Biostat, Ann Arbor, MI USA
[4] 1051 Riverside Dr,Unit 48, New York, NY 10032 USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Alzheimer's disease; canonical correlation analysis; longitudinal data analysis; PRINCIPAL-COMPONENTS; REGIONS;
D O I
10.1093/jrsssc/qlad022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers canonical correlation analysis for two longitudinal variables that are possibly sampled at different time resolutions with irregular grids. We modelled trajectories of the multivariate variables using random effects and found the most correlated sets of linear combinations in the latent space. Our numerical simulations showed that the longitudinal canonical correlation analysis (LCCA) effectively recovers underlying correlation patterns between two high-dimensional longitudinal data sets. We applied the proposed LCCA to data from the Alzheimer's Disease Neuroimaging Initiative and identified the longitudinal profiles of morphological brain changes and amyloid cumulation.
引用
收藏
页码:587 / 607
页数:21
相关论文
共 33 条
[1]   Functional network connectivity impairments and core cognitive deficits in schizophrenia [J].
Adhikari, Bhim M. ;
Hong, L. Elliot ;
Sampath, Hemalatha ;
Chiappelli, Joshua ;
Jahanshad, Neda ;
Thompson, Paul M. ;
Rowland, Laura M. ;
Calhoun, Vince D. ;
Du, Xiaoming ;
Chen, Shuo ;
Kochunov, Peter .
HUMAN BRAIN MAPPING, 2019, 40 (16) :4593-4605
[2]   Dementia induces correlated reductions in white matter integrity and cortical thickness: A multivariate neuroimaging study with sparse canonical correlation analysis [J].
Avants, Brian B. ;
Cook, Philip A. ;
Ungar, Lyle ;
Gee, James C. ;
Grossman, Murray .
NEUROIMAGE, 2010, 50 (03) :1004-1016
[3]   CANONICAL CORRELATION COEFFICIENTS OF HIGH-DIMENSIONAL GAUSSIAN VECTORS: FINITE RANK CASE [J].
Bao, Zhigang ;
Hu, Jiang ;
Pan, Guangming ;
Zhou, Wang .
ANNALS OF STATISTICS, 2019, 47 (01) :612-640
[4]   THE GENERAL CANONICAL CORRELATION DISTRIBUTION [J].
BARTLETT, MS .
ANNALS OF MATHEMATICAL STATISTICS, 1947, 18 (01) :1-17
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry [J].
Braak, Heiko ;
Alafuzoff, Irina ;
Arzberger, Thomas ;
Kretzschmar, Hans ;
Del Tredici, Kelly .
ACTA NEUROPATHOLOGICA, 2006, 112 (04) :389-404
[7]   Functional connectivity analysis of fMRI data based on regularized multiset canonical correlation analysis [J].
Deleus, Filip ;
Van Hulle, Marc M. .
JOURNAL OF NEUROSCIENCE METHODS, 2011, 197 (01) :143-157
[8]   An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest [J].
Desikan, Rahul S. ;
Segonne, Florent ;
Fischl, Bruce ;
Quinn, Brian T. ;
Dickerson, Bradford C. ;
Blacker, Deborah ;
Buckner, Randy L. ;
Dale, Anders M. ;
Maguire, R. Paul ;
Hyman, Bradley T. ;
Albert, Marilyn S. ;
Killiany, Ronald J. .
NEUROIMAGE, 2006, 31 (03) :968-980
[9]   Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the ADNI cohort [J].
Du, Lei ;
Liu, Kefei ;
Zhu, Lei ;
Yao, Xiaohui ;
Risacher, Shannon L. ;
Guo, Lei ;
Saykin, Andrew J. ;
Shen, Li .
BIOINFORMATICS, 2019, 35 (14) :I474-I483
[10]   Joint sparse canonical correlation analysis for detecting differential imaging genetics modules [J].
Fang, Jian ;
Lin, Dongdong ;
Schulz, S. Charles ;
Xu, Zongben ;
Calhoun, Vince D. ;
Wang, Yu-Ping .
BIOINFORMATICS, 2016, 32 (22) :3480-3488