Regularization of the Final Value Problem for the Time-Fractional Diffusion Equation

被引:1
作者
Al-Jamal, Mohammad F. [1 ,2 ]
Barghout, Kamal [1 ]
Abu-Libdeh, Nidal [1 ]
机构
[1] Prince Mohammad Bin Fahd Univ, Dept Math & Nat Sci, Al Khobar 31952, Saudi Arabia
[2] Yarmouk Univ, Dept Math, Irbid 21163, Jordan
关键词
Inverse problems; Tikhonov regularization; Nonhomogeneous; Fractional diffusion; Backward problem; Noisy final data; BACKWARD PROBLEM;
D O I
10.1007/s40995-023-01448-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the backward problem of reconstructing the initial condition of a nonhomogeneous time-fractional diffusion equation from final measurements. The proposed method relies on the eigenfunction expansion of the forward solution and the Tikhonov regularization to control the instability of the underlying inverse problem. We establish stability results and we provide convergence rates under a priori and a posteriori parameter choice rules. The resulting algorithm is robust and computationally inexpensive. Two examples are included to illustrate the effectiveness and accuracy of the proposed method.
引用
收藏
页码:931 / 941
页数:11
相关论文
共 36 条
[21]   Moving finite element methods for time fractional partial differential equations [J].
Jiang YingJun ;
Ma JingTang .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (06) :1287-1300
[22]   A tutorial on inverse problems for anomalous diffusion processes [J].
Jin, Bangti ;
Rundell, William .
INVERSE PROBLEMS, 2015, 31 (03)
[23]  
Kilbas A.A., 2006, Theory and applications of fractional differential equations, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
[24]   Fourier truncation method for the non-homogeneous time fractional backward heat conduction problem [J].
Kokila, J. ;
Nair, M. T. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2020, 28 (03) :402-426
[25]   PARAMETER IDENTIFICATION IN FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Li, Jing ;
Guo, Boling .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) :855-864
[26]   A backward problem for the time-fractional diffusion equation [J].
Liu, J. J. ;
Yamamoto, M. .
APPLICABLE ANALYSIS, 2010, 89 (11) :1769-1788
[27]   FRACTIONAL CAUCHY PROBLEMS ON BOUNDED DOMAINS [J].
Meerschaert, Mark M. ;
Nane, Erkan ;
Vellaisamy, P. .
ANNALS OF PROBABILITY, 2009, 37 (03) :979-1007
[28]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[29]   Filter regularization for final value fractional diffusion problem with deterministic and random noise [J].
Nguyen Huy Tuan ;
Kirane, Mokhtar ;
Bin-Mohsin, Bandar ;
Pham Thi Minh Tam .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) :1340-1361
[30]  
Podlubny I., 1991, Fractional Differential Equations