Regularization of the Final Value Problem for the Time-Fractional Diffusion Equation

被引:1
作者
Al-Jamal, Mohammad F. [1 ,2 ]
Barghout, Kamal [1 ]
Abu-Libdeh, Nidal [1 ]
机构
[1] Prince Mohammad Bin Fahd Univ, Dept Math & Nat Sci, Al Khobar 31952, Saudi Arabia
[2] Yarmouk Univ, Dept Math, Irbid 21163, Jordan
关键词
Inverse problems; Tikhonov regularization; Nonhomogeneous; Fractional diffusion; Backward problem; Noisy final data; BACKWARD PROBLEM;
D O I
10.1007/s40995-023-01448-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the backward problem of reconstructing the initial condition of a nonhomogeneous time-fractional diffusion equation from final measurements. The proposed method relies on the eigenfunction expansion of the forward solution and the Tikhonov regularization to control the instability of the underlying inverse problem. We establish stability results and we provide convergence rates under a priori and a posteriori parameter choice rules. The resulting algorithm is robust and computationally inexpensive. Two examples are included to illustrate the effectiveness and accuracy of the proposed method.
引用
收藏
页码:931 / 941
页数:11
相关论文
共 36 条
[1]   On the Recovery of a Conformable Time-Dependent Inverse Coefficient Problem for Diffusion Equation of Periodic Constraints Type and Integral Over-Posed Data [J].
Aal, Mohammad Abdel ;
Djennadi, Smina ;
Abu Arqub, Omar ;
Alsulami, Hamed .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
[2]   Solution for a fractional diffusion-wave equation defined in a bounded domain [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :145-155
[3]  
Al-Jamal M. F., 2017, Journal of Advanced Mathematical Studies, V10, P280
[4]   Recovering the Initial Distribution for a Time-Fractional Diffusion Equation [J].
Al-Jamal, Mohammad F. .
ACTA APPLICANDAE MATHEMATICAE, 2017, 149 (01) :87-99
[5]   A backward problem for the time-fractional diffusion equation [J].
Al-Jamal, Mohammad F. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) :2466-2474
[6]   A memory-dependent derivative model for damping in oscillatory systems [J].
Al-Jamel, Ahmed ;
Al-Jamal, Mohammad F. ;
El-Karamany, Ahmed .
JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (11) :2221-2229
[7]   Numerical Simulation for a High-Dimensional Chaotic Lorenz System Based on Gegenbauer Wavelet Polynomials [J].
Alqhtani, Manal ;
Khader, Mohamed M. ;
Saad, Khaled Mohammed .
MATHEMATICS, 2023, 11 (02)
[8]   Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology [J].
Alqhtani, Manal ;
Owolabi, Kolade M. ;
Saad, Khaled M. ;
Pindza, Edson .
CHAOS SOLITONS & FRACTALS, 2022, 161
[9]  
[Anonymous], 1996, Partial Differential Equations: Methods and Applications
[10]   NUMERICAL SOLUTION OF FRACTIONAL-ORDER POPULATION GROWTH MODEL USING FRACTIONAL-ORDER MUNTZ-LEGENDRE COLLOCATION METHOD AND PADE-APPROXIMANTS [J].
Asl, E. Hengamian ;
Saberi-Nadjafi, J. ;
Gachpazan, M. .
JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (02) :157-175