Polymer-based separator for all-solid-state batteries produced by additive manufacturing

被引:2
作者
Wudy, Katrin [1 ]
Sapishchuk, Svitlana [1 ]
Hofmann, Joseph [1 ]
Schmidt, Jochen [2 ]
Konwitschny, Fabian [3 ]
Toepper, Hans-Christoph [3 ]
Daub, Ruediger [3 ]
机构
[1] Tech Univ Munich, TUM Sch Engn & Design, Professorship Laser Based Addit Mfg, Garching, Germany
[2] Friedrich Alexander Univ Erlangen Nuernberg, Inst Particle Technol, Erlangen, Germany
[3] Tech Univ Munich, Inst Machine Tools & Ind Management, TUM Sch Engn & Design, Garching, Germany
关键词
additive manufacturing; all-solid-state battery; laser-based powder bed fusion of plastics; PVDF powder; separator; POWDER BED FUSION; LITHIUM-ION; SURFACE-ROUGHNESS; ELECTROLYTE; CONDUCTIVITY; PARTS;
D O I
10.1002/app.53690
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The high demand for an efficient energy supply for various applications facilitates the development of innovative storage technologies like all-solid-state batteries in addition to novel production technologies. Compared to the conventional manufacturing process, additive manufacturing (AM) is a promising technology used for the rapid and cost-effective production of battery components containing separators. However, AM technologies like laser-based powder bed fusion of polymers (PBF-LB/P) have been neglected so far. The present research aims to fill this research gap and outline a novel approach for processing polymers like polyethylene oxide (PEO) and polyvinylidene fluoride (PVDF) into separators using PBF-LB/P. Optimal process parameters for manufacturing PVDF and PEO with PBF-LB/P to generate homogeneous and dense layers represent the key findings of this paper and provide a deeper process understanding. The first proof of concept for producing separator layers by PBF-LB/P in a scalable process is demonstrated as a result.
引用
收藏
页数:13
相关论文
共 60 条
[1]   Microstructure, mechanical properties, and ionic conductivity of a solid-state electrolyte prepared using binderless laser powder bed fusion [J].
Acord, Katherine A. ;
Dupuy, Alexander D. ;
Wang, Xin ;
Vyatskikh, Alexandra L. ;
Donaldson, Olivia K. ;
Rupert, Timothy J. ;
Wu, James J. ;
Chen, Qian Nataly ;
Schoenung, Julie M. .
JOURNAL OF MATERIALS RESEARCH, 2021, 36 (22) :4565-4577
[2]   Electrochemical cell performance studies on all-solid-state battery using nano-composite polymer electrolyte membrane [J].
Agrawal, R. C. ;
Hashmi, S. A. ;
Pandey, G. P. .
IONICS, 2007, 13 (05) :295-298
[3]   Synthesis and characterization of porous poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-co-HFP)/poly(aniline) (PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane [J].
Ahmad, A. L. ;
Farooqui, U. R. ;
Hamid, N. A. .
ELECTROCHIMICA ACTA, 2018, 283 :842-849
[4]  
Andreas Wegner., 2012, BETRACHTUNG PULVERNU
[5]   Investigation on the stability of the lithium-polymer electrolyte interface [J].
Appetecchi, GB ;
Scaccia, S ;
Passerini, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (12) :4448-4452
[6]   Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Madhavi, Srinivasan ;
Liu, Hua-Kun .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (51) :14326-14346
[7]   Statistical modelling and optimization of surface roughness in the selective laser sintering process [J].
Bacchewar, P. B. ;
Singhal, S. K. ;
Pandey, P. M. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2007, 221 (01) :35-52
[8]  
Breuninger J., 2012, GENERATIVE FERTIGUNG
[9]   A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing [J].
Chatham, Camden A. ;
Long, Timothy E. ;
Williams, Christopher B. .
PROGRESS IN POLYMER SCIENCE, 2019, 93 :68-95
[10]  
Dechet M. A., 2019, P CIRP, V94, P95