Assembling the best of two worlds: Biomolecule-polymer nanoparticles via polymerization-induced self-assembly

被引:4
|
作者
Shirinichi, Farbod [1 ]
Ibrahim, Tarek [1 ]
Rodriguez, Mia [1 ]
Sun, Hao [1 ,2 ]
机构
[1] Univ New Haven, Tagliatela Coll Engn, Dept Chem & Chem & Biomed Engn, West Haven, CT USA
[2] Univ New Haven, Tagliatela Coll Engn, Dept Chem & Chem & Biomed Engn, West Haven, CT 06516 USA
关键词
biomolecule-polymer nanoparticles; nucleic acid-polymer nanoparticles; oligopeptide-polymer nanoparticles; polymerization-induced self-assembly; polysaccharide-polymer nanoparticles; protein-polymer nanoparticles; RING-OPENING POLYMERIZATION; RAFT POLYMERIZATION; EMULSION POLYMERIZATION; NANO-OBJECTS; PET-RAFT; PROTEIN; PISA; COPOLYMERS; LIGHT; AMPHIPHILES;
D O I
10.1002/pol.20220614
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Biomolecule-polymer nanoparticles are recently emerging as a new class of biomolecule-polymer conjugates. They represent promising nanomaterials in a wide range of applications including but not limited to therapeutics, drug delivery systems, antimicrobial agents, sensors, and catalysis. In the past 5 years, there has been a significant effort applied to expand the family of biomolecule-polymer nanoparticles via polymerization-induced self-assembly (PISA) approach. Given the excellent functional group tolerance of PISA process which relies on controlled polymerization methods, a broad spectrum of biomolecules has been incorporated into polymer nanoparticles with various morphologies. In this mini-review, we will highlight the biomolecule-polymer nanoparticles that have been achieved by PISA approach, including (1) protein-polymer nanoparticles, (2) oligopeptide-polymer nanoparticles, (3) nucleic acid-polymer nanoparticles, as well as (4) polysaccharide-polymer nanoparticles. In addition, various PISA strategies based on different controlled polymerization methods will be covered. Potential applications, challenges, and future perspectives of this new library of biomolecule-polymer conjugates are discussed. It is clear from recent research in this field that PISA represents a powerful synthetic tool towards biomolecule-polymer nanoparticles with novel structures and properties previously inaccessible by other synthetic approaches.
引用
收藏
页码:631 / 645
页数:15
相关论文
共 50 条
  • [31] RAFT polymerization-induced self-assembly of poly(ionic liquids) in ethanol
    Yang, Yongqi
    Li, Xiawei
    Yan, Youjun
    Pan, Rongkai
    Liu, Jun
    Lian, Meng
    Luo, Xin
    Liu, Guangyao
    E-POLYMERS, 2022, 22 (01) : 803 - 808
  • [32] Divergent photoiniferter polymerization-induced self-assembly
    Wong, Alexander J.
    Eades, Cabell B.
    Bowman, Jared I.
    Davidson, Cullen L. G.
    Sumerlin, Brent S.
    POLYMER CHEMISTRY, 2025, 16 (05) : 620 - 625
  • [33] Liquid Crystalline Nanoparticles via Polymerization-Induced Self-Assembly: Morphology Evolution and Function Regulation
    Xu, Chang
    Zheng, Ming-Xin
    Wei, Yen
    Yuan, Jin-Ying
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (15)
  • [34] Stimuli-Responsive Pickering Emulsions Regulated via Polymerization-Induced Self-Assembly Nanoparticles
    Zhou, Shuo
    Zeng, Min
    Liu, Yanlin
    Sui, Xiaofeng
    Yuan, Jinying
    MACROMOLECULAR RAPID COMMUNICATIONS, 2022, 43 (11)
  • [35] Self-Assembled Protein-Polymer Nanoparticles via Photoinitiated Polymerization-Induced Self-Assembly for Targeted and Enhanced Drug Delivery in Cancer Therapy
    Ediriweera, Gayathri R.
    Chang, Yixin
    Yang, Wenting
    Whittaker, Andrew K.
    Fu, Changkui
    MOLECULES, 2025, 30 (04):
  • [36] One-pot Preparation of Block Copolymer Nanoparticles by Polymerization-induced Self-assembly
    Su, Zhi-peng
    Tan, Meng-ting
    Cao, Yan-ling
    Shi, Yan
    Fu, Zhi-feng
    ACTA POLYMERICA SINICA, 2019, 50 (08): : 808 - 815
  • [37] Controlling Nanomaterial Size and Shape for Biomedical Applications via Polymerization-Induced Self-Assembly
    Khor, Song Yang
    Quinn, John F.
    Whittaker, Michael R.
    Truong, Nghia P.
    Davis, Thomas P.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (02)
  • [38] Core-functionalized nanoaggregates: preparation via polymerization-induced self-assembly and their applications
    Damsongsang, Panittha
    Hoven, Voravee P.
    Yusa, Shin-ichi
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (29) : 12776 - 12791
  • [39] Polymerization-Induced Self-Assembly for Artificial Biology: Opportunities and Challenges
    Cheng, Gong
    Perez-Mercader, Juan
    MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (02)
  • [40] Polymerization-Induced Self-Assembly for Efficient Fabrication of Biomedical Nanoplatforms
    Zhao, Xiaopeng
    Sun, Changrui
    Xiong, Fei
    Wang, Ting
    Li, Sheng
    Huo, Fengwei
    Yao, Xikuang
    RESEARCH, 2023, 6