Assembling the best of two worlds: Biomolecule-polymer nanoparticles via polymerization-induced self-assembly

被引:5
作者
Shirinichi, Farbod [1 ]
Ibrahim, Tarek [1 ]
Rodriguez, Mia [1 ]
Sun, Hao [1 ,2 ]
机构
[1] Univ New Haven, Tagliatela Coll Engn, Dept Chem & Chem & Biomed Engn, West Haven, CT USA
[2] Univ New Haven, Tagliatela Coll Engn, Dept Chem & Chem & Biomed Engn, West Haven, CT 06516 USA
关键词
biomolecule-polymer nanoparticles; nucleic acid-polymer nanoparticles; oligopeptide-polymer nanoparticles; polymerization-induced self-assembly; polysaccharide-polymer nanoparticles; protein-polymer nanoparticles; RING-OPENING POLYMERIZATION; RAFT POLYMERIZATION; EMULSION POLYMERIZATION; NANO-OBJECTS; PET-RAFT; PROTEIN; PISA; COPOLYMERS; LIGHT; AMPHIPHILES;
D O I
10.1002/pol.20220614
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Biomolecule-polymer nanoparticles are recently emerging as a new class of biomolecule-polymer conjugates. They represent promising nanomaterials in a wide range of applications including but not limited to therapeutics, drug delivery systems, antimicrobial agents, sensors, and catalysis. In the past 5 years, there has been a significant effort applied to expand the family of biomolecule-polymer nanoparticles via polymerization-induced self-assembly (PISA) approach. Given the excellent functional group tolerance of PISA process which relies on controlled polymerization methods, a broad spectrum of biomolecules has been incorporated into polymer nanoparticles with various morphologies. In this mini-review, we will highlight the biomolecule-polymer nanoparticles that have been achieved by PISA approach, including (1) protein-polymer nanoparticles, (2) oligopeptide-polymer nanoparticles, (3) nucleic acid-polymer nanoparticles, as well as (4) polysaccharide-polymer nanoparticles. In addition, various PISA strategies based on different controlled polymerization methods will be covered. Potential applications, challenges, and future perspectives of this new library of biomolecule-polymer conjugates are discussed. It is clear from recent research in this field that PISA represents a powerful synthetic tool towards biomolecule-polymer nanoparticles with novel structures and properties previously inaccessible by other synthetic approaches.
引用
收藏
页码:631 / 645
页数:15
相关论文
共 104 条
[1]   The Next 100 Years of Polymer Science [J].
Abd-El-Aziz, Alaa S. ;
Antonietti, Markus ;
Barner-Kowollik, Christopher ;
Binder, Wolfgang H. ;
Boeker, Alexander ;
Boyer, Cyrille ;
Buchmeiser, Michael R. ;
Cheng, Stephen Z. D. ;
D'Agosto, Franck ;
Floudas, George ;
Frey, Holger ;
Galli, Giancarlo ;
Genzer, Jan ;
Hartmann, Laura ;
Hoogenboom, Richard ;
Ishizone, Takashi ;
Kaplan, David L. ;
Leclerc, Mario ;
Lendlein, Andreas ;
Liu, Bin ;
Long, Timothy E. ;
Ludwigs, Sabine ;
Lutz, Jean-Francois ;
Matyjaszewski, Krzysztof ;
Meier, Michael A. R. ;
Muellen, Klaus ;
Muellner, Markus ;
Rieger, Bernhard ;
Russell, Thomas P. ;
Savin, Daniel A. ;
Schlueter, A. Dieter ;
Schubert, Ulrich S. ;
Seiffert, Sebastian ;
Severing, Kirsten ;
Soares, Joao B. P. ;
Staffilani, Mara ;
Sumerlin, Brent S. ;
Sun, Yanming ;
Tang, Ben Zhong ;
Tang, Chuanbing ;
Theato, Patrick ;
Tirelli, Nicola ;
Tsui, Ophelia K. C. ;
Unterlass, Miriam M. ;
Vana, Philipp ;
Voit, Brigitte ;
Vyazovkin, Sergey ;
Weder, Christoph ;
Wiesner, Ulrich ;
Wong, Wai-Yeung .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 2020, 221 (16)
[2]   Site-Specific Antibody-Drug Conjugates: The Nexus of Biciorthogonal Chemistry, Protein Engineering, and Drug Development [J].
Agarwal, Paresh ;
Bertozzi, Carolyn R. .
BIOCONJUGATE CHEMISTRY, 2015, 26 (02) :176-192
[3]   Preparation of a xanthate-terminated dextran by click chemistry:: Application to the synthesis of polysaccharide-coated nanopartides via surfactant-free ab initio emulsion polymerization of vinyl acetate [J].
Bernard, Julien ;
Save, Maud ;
Arathoon, Benoit ;
Charleux, Bernadette .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2008, 46 (08) :2845-2857
[4]   Peptides Displayed as High Density Brush Polymers Resist Proteolysis and Retain Bioactivity [J].
Blum, Angela P. ;
Kammeyer, Jacquelin K. ;
Yin, Jian ;
Crystal, Dustin T. ;
Rush, Anthony M. ;
Gilson, Michael K. ;
Gianneschi, Nathan C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (43) :15422-15437
[5]   Poly(peptide): Synthesis, Structure, and Function of Peptide-Polymer Amphiphiles and Protein-like Polymers [J].
Callmann, Cassandra E. ;
Thompson, Matthew P. ;
Gianneschi, Nathan C. .
ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (02) :400-413
[6]   Antitumor Activity of 1,18-Octadecanedioic Acid-Paclitaxel Complexed with Human Serum Albumin [J].
Callmann, Cassandra E. ;
LeGuyader, Clare L. M. ;
Burton, Spencer T. ;
Thompson, Matthew P. ;
Hennis, Robert ;
Barback, Christopher ;
Henriksen, Niel M. ;
Chan, Warren C. ;
Jaremko, Matt J. ;
Yang, Jin ;
Garcia, Arnold ;
Burkart, Michael D. ;
Gilson, Michael K. ;
Momper, Jeremiah D. ;
Bertin, Paul A. ;
Gianneschi, Nathan C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (30) :11765-11769
[7]   A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self Assembly [J].
Canning, Sarah L. ;
Smith, Gregory N. ;
Armes, Steven P. .
MACROMOLECULES, 2016, 49 (06) :1985-2001
[8]   Biosynthetic Polymers as Functional Materials [J].
Carlini, Andrea S. ;
Adamiak, Lisa ;
Gianneschi, Nathan C. .
MACROMOLECULES, 2016, 49 (12) :4379-4394
[9]   Cell-Penetrating, Peptide-Based RAFT Agent for Constructing Penetration Enhancers [J].
Chen, Chao ;
Richter, Friederike ;
Guerrero-Sanchez, Carlos ;
Traeger, Anja ;
Schubert, Ulrich S. ;
Feng, Anchao ;
Thang, San H. .
ACS MACRO LETTERS, 2020, 9 (02) :260-265
[10]   RAFT polymerization of a RGD peptide-based methacrylamide monomer for cell adhesion [J].
Chen, Chao ;
Thang, San H. .
POLYMER CHEMISTRY, 2018, 9 (14) :1780-1786