Minimization of lowest positive periodic eigenvalue for the Camassa-Holm equation with indefinite potential

被引:14
作者
Chu, Jifeng [1 ]
Meng, Gang [2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
MEASURE DIFFERENTIAL-EQUATIONS; INVERSE SPECTRAL PROBLEM; SHALLOW-WATER EQUATION; PRINCIPAL EIGENVALUES; CONTINUOUS DEPENDENCE; ISOSPECTRAL PROBLEM; GEODESIC-FLOW; CONTINUITY; WEIGHT;
D O I
10.4064/sm211019-20-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a measure mu is an element of Msgn, we study the periodic eigenvalues of the measure differential equation dy center dot = 14 ydt+lambda yd mu(t). We present a variational characterization of the lowest positive periodic eigenvalues and prove a strong continuous dependence of eigenvalues on potentials as an infinite -dimensional parameter. The optimal lower bound of the lowest positive eigenvalues is also obtained when the total variation of potentials is given. Our main results can be directly applied to the periodic spectrum of the Camassa-Holm equation y ''=14y +lambda m(t)y. In particular, we obtain the optimal lower bound for the lowest positive periodic eigenvalues by allowing the potential m to change sign.
引用
收藏
页码:241 / 258
页数:18
相关论文
共 48 条
[1]   On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions [J].
Afrouzi, GA ;
Brown, KJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) :125-130
[2]   Calogero-Francoise flows and periodic peakons [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 133 (03) :1631-1646
[3]   On the spectral problem associated with the Camassa-Holm equation [J].
Bennewitz, C .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2004, 11 (04) :422-434
[4]   INVERSE SPECTRAL AND SCATTERING THEORY FOR THE HALF-LINE LEFT-DEFINITE STURM-LIOUVILLE PROBLEM [J].
Bennewitz, C. ;
Brown, B. M. ;
Weikard, R. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (05) :2105-2131
[5]  
Bennewitz Christer., 2020, SPECTRAL SCATTERING, VI
[6]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[7]  
Camassa R., 1994, ADV APPL MECH, V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[8]   Continuous dependence and estimates of eigenvalues for periodic generalized Camassa-Holm equations [J].
Chu, Jifeng ;
Meng, Gang ;
Zhang, Zhi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (07) :6343-6358
[9]   Continuity and minimization of spectrum related with the periodic Camassa-Holm equation [J].
Chu, Jifeng ;
Meng, Gang ;
Zhang, Meirong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (04) :1678-1695
[10]   On the cauchy problem for the periodic Camassa-Holm equation [J].
Constantin, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 141 (02) :218-235