Genus Zero (su)over-cap(n)m Wess-Zumino-Witten Fusion Rules Via Macdonald Polynomials

被引:0
作者
van Diejen, J. F. [1 ]
机构
[1] Univ Talca, Inst Matemat, Casilla 747, Talca, Chile
关键词
CHERN-SIMONS THEORY; QUANTUM COHOMOLOGY; SYSTEMS; RINGS; LINEARIZATION; ALGORITHM; ALGEBRAS; FORMULA;
D O I
10.1007/s00220-022-04506-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Kac-Walton formula computes the fusion coefficients of genus zero (su) over cap (n)(m) Wess-Zumino-Witten conformal field theories as the structure constants of the fusion algebra in the basis of Schur polynomials. Modulo a relation identifying the nth elementary symmetric polynomial with the unit polynomial, this fusion algebra is obtained from the algebra of symmetric polynomials in n variables by modding out a fusion ideal generated by the Schur polynomials of degree m + 1. The present work constructs a refinement of the fusion algebra associated with the Macdonald polynomials at q(m)t(n) = 1. The pertinent refined structure constants turn out to be given by the corresponding parameter specialization of Macdonald's (q, t)-Littlewood-Richardson coefficients that can be expressed alternatively in terms of the refined Verlinde formula. This reveals that the genus zero (su) over cap (n)(m) Wess-Zumino-Witten fusion coefficients can be retrieved directly from the (q, t)-Littlewood-Richardson coefficients through the parameter degeneration (q, t) = (exp(2 pi i/nc+m), exp(2 pi ic/nc+m)), c -> 1. The refinement thus establishes that at the level of the structure constants (q, 1)-deformation provides a vehicle for performing the reduction modulo the fusion ideal via parameter specialization.
引用
收藏
页码:967 / 994
页数:28
相关论文
共 55 条
  • [1] Knot Homology and Refined Chern-Simons Index
    Aganagic, Mina
    Shakirov, Shamil
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (01) : 187 - 228
  • [2] Aganagic M, 2012, P SYMP PURE MATH, V85, P3
  • [3] Fusion Rings for Quantum Groups
    Andersen, Henning Haahr
    Stroppel, Catharina
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (06) : 1869 - 1888
  • [4] Andersen J.E., ARXIV
  • [5] [Anonymous], 2010, MEM AM MATH SOC
  • [6] BEAUVILLE A., 1996, ISRAEL MATH C P, V9, P75
  • [7] Quantum multiplication of Schur polynomials
    Bertram, A
    Ciocan-Fontanine, I
    Fulton, W
    [J]. JOURNAL OF ALGEBRA, 1999, 219 (02) : 728 - 746
  • [8] Quantum Schubert calculus
    Bertram, A
    [J]. ADVANCES IN MATHEMATICS, 1997, 128 (02) : 289 - 305
  • [9] Supersymmetric Ruijs']jsenaars-Schneider Model
    Blondeau-Fournier, O.
    Desrosiers, P.
    Mathieu, P.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (12)
  • [10] Bourbaki N., 1968, GROUPES ALGEBRES LIE