Low-noise cryogenic microwave amplifier characterization with a calibrated noise source

被引:4
|
作者
Malnou, M. [1 ,2 ]
Larson, T. F. Q. [1 ,2 ]
Teufel, J. D. [1 ]
Lecocq, F. [1 ]
Aumentado, J. [1 ]
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
关键词
QUANTUM; AMPLIFICATION;
D O I
10.1063/5.0193591
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Parametric amplifiers have become a workhorse in superconducting quantum computing; however, research and development of these devices has been hampered by inconsistent and, sometimes, misleading noise performance characterization methodologies. The concepts behind noise characterization are deceptively simple, and there are many places where one can make mistakes, either in measurement or in interpretation and analysis. In this article, we cover the basics of noise performance characterization and the special problems it presents in parametric amplifiers with limited power handling capability. We illustrate the issues with three specific examples: a high-electron mobility transistor amplifier, a Josephson traveling-wave parametric amplifier, and a Josephson parametric amplifier. We emphasize the use of a 50-Omega shot noise tunnel junction (SNTJ) as a broadband noise source, demonstrating its utility for cryogenic amplifier amplifications. These practical examples highlight the role of loss as well as the additional parametric amplifier "idler" input mode.
引用
收藏
页数:19
相关论文
共 39 条
  • [1] Low-Noise Parametric Resonant Amplifier
    Lee, Wooram
    Afshari, Ehsan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (03) : 479 - 492
  • [2] Low-noise microwave parametric amplifier based on self-heated nonlinear impedance with subnanosecond thermal response
    Will, Marco
    Haque, Mohammad Tasnimul
    Chaudhry, Yuvraj
    Golubev, Dmitry
    Hakonen, Pertti
    PHYSICAL REVIEW APPLIED, 2025, 23 (01):
  • [3] A wideband, low-noise superconducting amplifier with high dynamic range
    Eom, Byeong Ho
    Day, Peter K.
    LeDuc, Henry G.
    Zmuidzinas, Jonas
    NATURE PHYSICS, 2012, 8 (08) : 623 - 627
  • [4] Low-noise Raman fiber amplifier pumped by semiconductor disk laser
    Chamorovskiy, A.
    Rautiainen, J.
    Rantamaki, A.
    Okhotnikov, O. G.
    OPTICS EXPRESS, 2011, 19 (07): : 6422 - 6427
  • [5] Low-noise macroscopic twin beams
    Iskhakov, Timur Sh.
    Usenko, Vladyslav C.
    Filip, Radim
    Chekhova, Maria V.
    Leuchs, Gerd
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [6] Design and Investigation of a Metamorphic InAs Channel Inset InP HEMT for Cryogenic Low-Noise Amplifiers
    Nandi, Soumak
    Dubey, Shashank Kumar
    Kumar, Mukesh
    Dwivedi, Amit Krishna
    Guduri, Manisha
    Islam, Aminul
    IEEE ACCESS, 2023, 11 : 133115 - 133130
  • [7] On-chip characterization of low-noise microstrip-coupled transition edge sensors
    Rostem, Karwan
    Goldie, David J.
    Withington, Stafford
    Glowacka, Dorota M.
    Tsaneva, Vassilka N.
    Audley, Michael D.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (08)
  • [8] A low-drift, low-noise, multichannel dc voltage source for segmented-electrode Paul traps
    Beev, Nikolai
    Fenske, Julia-Aileen
    Hannig, Stephan
    Schmidt, Piet O.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (05)
  • [9] Ultra Low Noise Cryogenic Amplifiers for Radio Astronomy
    Bryerton, E. W.
    Morgan, M.
    Pospieszalski, M. W.
    2013 IEEE RADIO AND WIRELESS SYMPOSIUM (RWS), 2013, : 358 - 360
  • [10] A 670 GHz Low Noise Amplifier with <10 dB Packaged Noise Figure
    Deal, W. R.
    Zamora, A.
    Leong, K.
    Liu, P. H.
    Yoshida, W.
    Zhou, J.
    Lange, M.
    Gorospe, B.
    Nguyen, K.
    Mei, X. B.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2016, 26 (10) : 837 - 839