Coupling data-driven geochemical analysis and ensemble machine learning for automatic identification of oceanic anoxic events

被引:1
作者
Allam, Sherif [1 ]
Al-Ramadan, Khalid [1 ,2 ]
Koeshidayatullah, Ardiansyah [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Coll Petr Engn & Geosci, Dept Geosci, Dhahran, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Coll Petr Engn & Geosci, Ctr Integrat Petr Res, Dhahran, Saudi Arabia
关键词
Anoxic; OAE; machine learning; AI; Geochemistry; REDOX CONDITIONS; ORGANIC-CARBON; TETHYS; BURIAL; SEDIMENTARY; RECORD; LEVEL;
D O I
10.1016/j.jseaes.2024.106027
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Oceanic Anoxic Events (OAEs) have been recorded across the Phanerozoic and linked with catastrophic events in geological records, including the massive release of CO2 into the atmosphere and mass extinctions of marine animals, particularly during the Cretaceous period (e.g., OAE-2). Overall, the occurrence of OAEs were typically identified based on the deposition of organic -rich black shales, carbon isotopic excursions, and enrichment of redox-sensitive elements. While various OAE intervals have been extensively studied across the Tethys using multiproxy geochemical records, recognizing the expression, and understanding the duration of these events are rather challenging and a subject of active debate. This is further compounded by the time-consuming and expertdemanding analysis to interpret complex geochemical records associated with OAEs. To address these issues, we propose a novel approach by coupling data -driven geochemical analysis and ensemble machine learning to recognize and predict the occurrence of OAE-2 in the Upper Cretaceous based on key geochemical records (813Corg, TOC, Mo, V, U) collected from different areas geographically. Considering variation in data availability and completeness, we performed machine learning -based data imputation to fill the gaps in geochemical records without perturbing the overall trends and patterns. With this, our prediction of OAE in various locations using ensemble machine learning, achieving an accuracy of up to 90% in the validation and 78% in the blind test predictions. The model could also match the interpreted OAE-2 intervals from different locations with higher resolution prediction based on the 813Corg and the TOC as the most important parameters followed by the sensitive redox elements. This suggests that the model utilized similar parameters used by geologists in identifying OAEs, increasing the model interpretability. Application of machine learning and data -driven geochemical analysis could help in providing a robust and time -efficient identification of OAE and find new unexplored OAEs along the stratigraphic records.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A machine learning approach for implementing data-driven production control policies
    Khayyati, Siamak
    Tan, Baris
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2022, 60 (10) : 3107 - 3128
  • [42] Classification of Nonmetallic Inclusions in Steel by Data-Driven Machine Learning Methods
    Babu, Shashank Ramesh
    Musi, Robert
    Thiele, Kathrin
    Michelic, Susanne K.
    STEEL RESEARCH INTERNATIONAL, 2023, 94 (01)
  • [43] A data-driven machine learning approach for discovering potent LasR inhibitors
    Koh, Christabel Ming Ming
    Ping, Lilian Siaw Yung
    Xuan, Christopher Ha Heng
    Theng, Lau Bee
    San, Hwang Siaw
    Palombo, Enzo A.
    Wezen, Xavier Chee
    BIOENGINEERED, 2023, 14 (01) : 2243416
  • [44] Damage Detection with Data-Driven Machine Learning Models on an Experimental Structure
    Alemu, Yohannes L.
    Lahmer, Tom
    Walther, Christian
    ENG, 2024, 5 (02): : 629 - 656
  • [45] Data-driven machine learning for alloy research: Recent applications and prospects
    Gao, Xueyun
    Wang, Haiyan
    Tan, Huijie
    Xing, Lei
    Hu, Zhiyu
    MATERIALS TODAY COMMUNICATIONS, 2023, 36
  • [46] Data-driven topo-climatic mapping with machine learning methods
    A. Pozdnoukhov
    L. Foresti
    M. Kanevski
    Natural Hazards, 2009, 50 : 497 - 518
  • [47] Machine learning technique for data-driven fault detection of nonlinear processes
    Said, Maroua
    ben Abdellafou, Khaoula
    Taouali, Okba
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (04) : 865 - 884
  • [48] A data-driven approach to predicting diabetes and cardiovascular disease with machine learning
    Dinh, An
    Miertschin, Stacey
    Young, Amber
    Mohanty, Somya D.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [49] Prediction of dialysis adequacy using data-driven machine learning algorithms
    Liu, Yi-Chen
    Qing, Ji-Ping
    Li, Rong
    Chang, Juan
    Xu, Li-Xia
    RENAL FAILURE, 2024, 46 (02)
  • [50] Machine Learning Models for Data-Driven Prediction of Diabetes by Lifestyle Type
    Qin, Yifan
    Wu, Jinlong
    Xiao, Wen
    Wang, Kun
    Huang, Anbing
    Liu, Bowen
    Yu, Jingxuan
    Li, Chuhao
    Yu, Fengyu
    Ren, Zhanbing
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (22)