Coupling data-driven geochemical analysis and ensemble machine learning for automatic identification of oceanic anoxic events

被引:1
|
作者
Allam, Sherif [1 ]
Al-Ramadan, Khalid [1 ,2 ]
Koeshidayatullah, Ardiansyah [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Coll Petr Engn & Geosci, Dept Geosci, Dhahran, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Coll Petr Engn & Geosci, Ctr Integrat Petr Res, Dhahran, Saudi Arabia
关键词
Anoxic; OAE; machine learning; AI; Geochemistry; REDOX CONDITIONS; ORGANIC-CARBON; TETHYS; BURIAL; SEDIMENTARY; RECORD; LEVEL;
D O I
10.1016/j.jseaes.2024.106027
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Oceanic Anoxic Events (OAEs) have been recorded across the Phanerozoic and linked with catastrophic events in geological records, including the massive release of CO2 into the atmosphere and mass extinctions of marine animals, particularly during the Cretaceous period (e.g., OAE-2). Overall, the occurrence of OAEs were typically identified based on the deposition of organic -rich black shales, carbon isotopic excursions, and enrichment of redox-sensitive elements. While various OAE intervals have been extensively studied across the Tethys using multiproxy geochemical records, recognizing the expression, and understanding the duration of these events are rather challenging and a subject of active debate. This is further compounded by the time-consuming and expertdemanding analysis to interpret complex geochemical records associated with OAEs. To address these issues, we propose a novel approach by coupling data -driven geochemical analysis and ensemble machine learning to recognize and predict the occurrence of OAE-2 in the Upper Cretaceous based on key geochemical records (813Corg, TOC, Mo, V, U) collected from different areas geographically. Considering variation in data availability and completeness, we performed machine learning -based data imputation to fill the gaps in geochemical records without perturbing the overall trends and patterns. With this, our prediction of OAE in various locations using ensemble machine learning, achieving an accuracy of up to 90% in the validation and 78% in the blind test predictions. The model could also match the interpreted OAE-2 intervals from different locations with higher resolution prediction based on the 813Corg and the TOC as the most important parameters followed by the sensitive redox elements. This suggests that the model utilized similar parameters used by geologists in identifying OAEs, increasing the model interpretability. Application of machine learning and data -driven geochemical analysis could help in providing a robust and time -efficient identification of OAE and find new unexplored OAEs along the stratigraphic records.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Data-driven polynomial chaos expansion for machine learning regression
    Torre, Emiliano
    Marelli, Stefano
    Embrechts, Paul
    Sudret, Bruno
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 388 : 601 - 623
  • [22] A DATA-DRIVEN WORKFLOW FOR PREDICTION OF FRACTURING PARAMETERS WITH MACHINE LEARNING
    Zhu, Zhihua
    Hsu, Maoya
    Kun, Ding
    Wang, Tianyu
    He, Xiaodong
    Tian, Shouceng
    THERMAL SCIENCE, 2024, 28 (02): : 1085 - 1090
  • [23] A Data-Driven Comparative Analysis of Machine-Learning Models for Familial Hypercholesterolemia Detection
    Kocejko, Tomasz
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [24] A machine learning-based data-driven method for risk analysis of marine accidents
    Feng, Yinwei
    Wang, Huanxin
    Xia, Guoqing
    Cao, Wenjie
    Li, Tianyi
    Wang, Xinjian
    Liu, Zhengjiang
    JOURNAL OF MARINE ENGINEERING AND TECHNOLOGY, 2025, 24 (02) : 147 - 158
  • [25] Data-driven advice for applying machine learning to bioinformatics problems
    Olsony, Randal S.
    La Cava, William
    Mustahsan, Zairah
    Varik, Akshay
    Moore, Jason H.
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2018 (PSB), 2018, : 192 - 203
  • [26] Data-driven visualization of the dynamics of machine learning in materials research
    Ye, Zhiwei
    Li, Jialing
    Wang, Wenjun
    Qin, Fanzhi
    Li, Keteng
    Tan, Hao
    Zhang, Chen
    JOURNAL OF CLEANER PRODUCTION, 2024, 449
  • [27] Data-Driven Consensus Protocol Classification Using Machine Learning
    Marcozzi, Marco
    Filatovas, Ernestas
    Stripinis, Linas
    Paulavicius, Remigijus
    MATHEMATICS, 2024, 12 (02)
  • [28] A scoping review of the clinical application of machine learning in data-driven population segmentation analysis
    Liu, Pinyan
    Wang, Ziwen
    Liu, Nan
    Peres, Marco Aurelio
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2023, 30 (09) : 1573 - 1582
  • [29] Reduced Order Data-Driven Analysis of Cavitating Flow over Hydrofoil with Machine Learning
    Guang, Weilong
    Wang, Peng
    Zhang, Jinshuai
    Yuan, Linjuan
    Wang, Yue
    Feng, Guang
    Tao, Ran
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (01)
  • [30] Data-driven interpretable ensemble learning methods for the prediction of wind turbine power incorporating SHAP analysis
    Cakiroglu, Celal
    Demir, Sercan
    Ozdemir, Mehmet Hakan
    Aylak, Batin Latif
    Sariisik, Gencay
    Abualigah, Laith
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237