Coupling data-driven geochemical analysis and ensemble machine learning for automatic identification of oceanic anoxic events

被引:1
|
作者
Allam, Sherif [1 ]
Al-Ramadan, Khalid [1 ,2 ]
Koeshidayatullah, Ardiansyah [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Coll Petr Engn & Geosci, Dept Geosci, Dhahran, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Coll Petr Engn & Geosci, Ctr Integrat Petr Res, Dhahran, Saudi Arabia
关键词
Anoxic; OAE; machine learning; AI; Geochemistry; REDOX CONDITIONS; ORGANIC-CARBON; TETHYS; BURIAL; SEDIMENTARY; RECORD; LEVEL;
D O I
10.1016/j.jseaes.2024.106027
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Oceanic Anoxic Events (OAEs) have been recorded across the Phanerozoic and linked with catastrophic events in geological records, including the massive release of CO2 into the atmosphere and mass extinctions of marine animals, particularly during the Cretaceous period (e.g., OAE-2). Overall, the occurrence of OAEs were typically identified based on the deposition of organic -rich black shales, carbon isotopic excursions, and enrichment of redox-sensitive elements. While various OAE intervals have been extensively studied across the Tethys using multiproxy geochemical records, recognizing the expression, and understanding the duration of these events are rather challenging and a subject of active debate. This is further compounded by the time-consuming and expertdemanding analysis to interpret complex geochemical records associated with OAEs. To address these issues, we propose a novel approach by coupling data -driven geochemical analysis and ensemble machine learning to recognize and predict the occurrence of OAE-2 in the Upper Cretaceous based on key geochemical records (813Corg, TOC, Mo, V, U) collected from different areas geographically. Considering variation in data availability and completeness, we performed machine learning -based data imputation to fill the gaps in geochemical records without perturbing the overall trends and patterns. With this, our prediction of OAE in various locations using ensemble machine learning, achieving an accuracy of up to 90% in the validation and 78% in the blind test predictions. The model could also match the interpreted OAE-2 intervals from different locations with higher resolution prediction based on the 813Corg and the TOC as the most important parameters followed by the sensitive redox elements. This suggests that the model utilized similar parameters used by geologists in identifying OAEs, increasing the model interpretability. Application of machine learning and data -driven geochemical analysis could help in providing a robust and time -efficient identification of OAE and find new unexplored OAEs along the stratigraphic records.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Data-driven System Identification of Thermal Systems using Machine Learning
    Nechita, Stefan-Cristian
    Toth, Roland
    van Berkel, Koos
    IFAC PAPERSONLINE, 2021, 54 (07): : 162 - 167
  • [2] Automatic Data-Driven Software Change Identification via Code Representation Learning
    Hericko, Tjasa
    27TH INTERNATIONAL CONFERENCE ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, EASE 2023, 2023, : 319 - 323
  • [3] Data-driven decarbonization framework with machine learning
    Jain, Ayush
    Padmanaban, Manikandan
    Hazra, Jagabondhu
    Guruprasad, Ranjini
    Godbole, Shantanu
    Syam, Heriansyah
    ENVIRONMENTAL DATA SCIENCE, 2024, 3
  • [4] Data-driven machine learning approaches for precise lithofacies identification in complex geological environments
    Ali, Muhammad
    Zhu, Peimin
    Ma, Huolin
    Jiang, Ren
    Zhang, Hao
    Ashraf, Umar
    Hussain, Wakeel
    GEO-SPATIAL INFORMATION SCIENCE, 2024,
  • [5] Towards Assessing the Electricity Demand in Brazil: Data-Driven Analysis and Ensemble Learning Models
    Leme, Joao Vitor
    Casaca, Wallace
    Colnago, Marilaine
    Dias, Mauricio Araujo
    ENERGIES, 2020, 13 (06)
  • [6] Anomaly analytics in data-driven machine learning applications
    Azimi, Shelernaz
    Pahl, Claus
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2025, 19 (01) : 155 - 180
  • [7] Machine Learning Descriptors for Data-Driven Catalysis Study
    Mou, Li-Hui
    Han, TianTian
    Smith, Pieter E. S.
    Sharman, Edward
    Jiang, Jun
    ADVANCED SCIENCE, 2023, 10 (22)
  • [8] Machine Learning for Data-Driven Discovery The Rise and Relevance
    Sengupta, Partho P.
    Shrestha, Sirish
    JACC-CARDIOVASCULAR IMAGING, 2019, 12 (04) : 690 - 692
  • [9] The rise of data-driven microscopy powered by machine learning
    Morgado, Leonor
    Gomez-de-Mariscal, Estibaliz
    Heil, Hannah S.
    Henriques, Ricardo
    JOURNAL OF MICROSCOPY, 2024, 295 (02) : 85 - 92
  • [10] Constructing Dependable Data-Driven Software With Machine Learning
    Pahl, Claus
    Azimi, Shelernaz
    IEEE SOFTWARE, 2021, 38 (06) : 88 - 97