Long-range UAV Thermal Geo-localization with Satellite Imagery

被引:2
作者
Xiao, Jiuhong [1 ]
Tortei, Daniel [2 ]
Roura, Eloy [2 ]
Loianno, Giuseppe [1 ]
机构
[1] NYU, Tandon Sch Engn, Brooklyn, NY 11201 USA
[2] Technol Innovat Inst, Autonomous Robot Res Ctr, Abu Dhabi, U Arab Emirates
来源
2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2023年
关键词
DOMAIN ADAPTATION;
D O I
10.1109/IROS55552.2023.10342068
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Onboard sensors, such as cameras and thermal sensors, have emerged as effective alternatives to Global Positioning System (GPS) for geo-localization in Unmanned Aerial Vehicle (UAV) navigation. Since GPS can suffer from signal loss and spoofing problems, researchers have explored camera-based techniques such as Visual Geo-localization (VG) using satellite RGB imagery. Additionally, thermal geo-localization (TG) has become crucial for long-range UAV flights in low-illumination environments. This paper proposes a novel thermal geo-localization framework using satellite RGB imagery, which includes multiple domain adaptation methods to address the limited availability of paired thermal and satellite images. The experimental results demonstrate the effectiveness of the proposed approach in achieving reliable thermal geo-localization performance, even in thermal images with indistinct self-similar features. We evaluate our approach on real data collected onboard a UAV. We also release the code and Boson-nighttime, a dataset of paired satellite-thermal and unpaired satellite images for thermal geo-localization with satellite imagery. To the best of our knowledge, this work is the first to propose a thermal geo-localization method using satellite RGB imagery in long-range flights.
引用
收藏
页码:5820 / 5827
页数:8
相关论文
共 42 条
  • [1] Self-training Guided Adversarial Domain Adaptation For Thermal Imagery
    Akkaya, Ibrahim Batuhan
    Altinel, Fazil
    Halici, Ugur
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 4317 - 4326
  • [2] Arandjelovic R, 2018, IEEE T PATTERN ANAL, V40, P1437, DOI [10.1109/TPAMI.2017.2711011, 10.1109/CVPR.2016.572]
  • [3] Berton G., 2022, IEEE CVF C COMP VIS
  • [4] Viewpoint Invariant Dense Matching for Visual Geolocalization
    Berton, Gabriele
    Masone, Carlo
    Paolicelli, Valerio
    Caputo, Barbara
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 12149 - 12158
  • [5] UAV Localization Using Autoencoded Satellite Images
    Bianchi, Mollie
    Barfoot, Timothy D.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 1761 - 1768
  • [6] Real-time Geo-localization Using Satellite Imagery and Topography for Unmanned Aerial Vehicles
    Chen, Shuxiao
    Wu, Xiangyu
    Mueller, Mark W.
    Sreenath, Koushil
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 2275 - 2281
  • [7] A review on absolute visual localization for UAV
    Couturier, Andy
    Akhloufi, Moulay A.
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2021, 135
  • [8] Dalen G. J. V., 2016, AIAA GUID NAV CONTR
  • [9] Delaune J, 2019, IEEE INT C INT ROBOT, P1122, DOI [10.1109/IROS40897.2019.8968238, 10.1109/iros40897.2019.8968238]
  • [10] Gan Lu, 2022, ARXIV221004367