Semilinear wave equations of derivative type with spatial weights in one space dimension

被引:4
作者
Kitamura, Shunsuke [1 ]
Morisawa, Katsuaki [2 ]
Takamura, Hiroyuki [3 ]
机构
[1] Tohoku Univ, Math Inst, Doctor course, Sendai 9808578, Japan
[2] Musashi High Sch & Jr High Sch, 1-26-1 Toyotamakami, Nerima, Tokyo 1768535, Japan
[3] Tohoku Univ, Math Inst, Sendai 9808578, Japan
基金
日本学术振兴会;
关键词
Semilinear wave equation; One dimension; Classical solution; Lifespan; LIFE-SPAN; CLASSICAL-SOLUTIONS; BLOW-UP; NONLINEAR TERMS;
D O I
10.1016/j.nonrwa.2022.103764
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the initial value problems for semilinear wave equations of derivative type with spatial weights in one space dimension. The lifespan estimates of classical solutions are quite different from those for nonlinearity of unknown function itself as the global-in-time existence can be established by spatial decay. & COPY; 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:12
相关论文
共 11 条
[2]  
John F., 1990, ULS Pitcher Lectures in Mathematical Science
[3]  
Kato M, 2019, DIFFER INTEGRAL EQU, V32, P659
[4]   The lifespan of classical solutions of semilinear wave equations with spatial weights and compactly supported data in one space dimension [J].
Kitamura, Shunsuke ;
Morisawa, Katsuaki ;
Takamura, Hiroyuki .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 307 :486-516
[5]  
Kubo H., 2013, INTERDISCIP INF SCI, V19, P143, DOI DOI 10.4036/iis.2013.143
[6]  
LI DQ, 1992, CHINESE ANN MATH B, V13, P266
[7]  
LI TT, 1991, CR ACAD SCI I-MATH, V312, P103
[8]  
Suzuki A., 2010, Master Thesis
[9]   The lifespan of solutions to wave equations with weighted nonlinear terms in one space dimension [J].
Wakasa, Kyouhei .
HOKKAIDO MATHEMATICAL JOURNAL, 2017, 46 (02) :257-276
[10]  
ZHOU Y, 1992, CHINESE ANN MATH B, V13, P230