Integrated Plastic Microfluidic Device for Heavy Metal Ion Detection

被引:8
作者
Filippidou, Myrto Kyriaki [1 ]
Kanaris, Aris Ioannis [1 ]
Aslanidis, Evangelos [2 ]
Rapesi, Annita [2 ,3 ]
Tsounidi, Dimitra [3 ]
Ntouskas, Sotirios [1 ]
Skotadis, Evangelos [2 ]
Tsekenis, George [3 ]
Tsoukalas, Dimitris [2 ]
Tserepi, Angeliki [1 ]
Chatzandroulis, Stavros [1 ]
机构
[1] Inst Nanosci & Nanotechnol NCSR Demokritos, Aghia Paraskevi 15341, Greece
[2] Natl Tech Univ Athens, Dept Appl Sci, Zografos 15780, Greece
[3] Acad Athens, Biomed Res Fdn, Athens 11527, Greece
关键词
Lab on a Chip; microfluidics; microfabrication; Kapton; heavy metal ion detection; DNAzyme; nanoparticles; biosensor; ON-A-CHIP; DNA; BIOSENSORS; TRANSPORT; PLATFORM; DNAZYME;
D O I
10.3390/mi14081595
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The presence of heavy metal ions in soil, air and water constitutes an important global environmental threat, as these ions accumulate throughout the food chain, contributing to the rise of chronic diseases, including, amongst others, cancer and kidney failure. To date, many efforts have been made for their detection, but there is still a need for the development of sensitive, low-cost, and portable devices able to conduct on-site detection of heavy metal ions. In this work, we combine microfluidic technology and electrochemical sensing in a plastic chip for the selective detection of heavy metal ions utilizing DNAzymes immobilized in between platinum nanoparticles (PtNPs), demonstrating a reliable portable solution for water pollution monitoring. For the realization of the microfluidic-based heavy metal ion detection device, a fast and easy-to-implement fabrication method based on the photolithography of dry photosensitive layers is proposed. As a proof of concept, we demonstrate the detection of Pb2+ ions using the prototype microfluidic device.
引用
收藏
页数:13
相关论文
共 42 条
[1]  
Becker H, 2017, METHODS MOL BIOL, V1547, P3, DOI 10.1007/978-1-4939-6734-6_1
[2]   A novel research on serpentine microchannels of passive micromixers [J].
Chen, Xueye ;
Li, Tiechuan ;
Hu, Zengliang .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2017, 23 (07) :2649-2656
[3]   Lab-on-a-chip devices for global health: Past studies and future opportunities [J].
Chin, Curtis D. ;
Linder, Vincent ;
Sia, Samuel K. .
LAB ON A CHIP, 2007, 7 (01) :41-57
[4]   Stable hydrophilization of FR4 and polyimide-based substrates implemented in microfluidics-on-PCB [J].
Cunaj, E. ;
Petrou, P. S. ;
Kaprou, G. D. ;
Kakabakos, S. E. ;
Gogolides, E. ;
Tserepi, A. .
SURFACE & COATINGS TECHNOLOGY, 2018, 334 :292-299
[5]   A chemically functionalized paper-based microfluidic platform for multiplex heavy metal detection [J].
Devadhasan, Jasmine Pramila ;
Kim, Jungkyu .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 273 :18-24
[6]   Heavy Metals Detection with Paper-Based Electrochemical Sensors [J].
Ding, Ruiyu ;
Cheong, Yi Heng ;
Ahamed, Ashiq ;
Lisak, Grzegorz .
ANALYTICAL CHEMISTRY, 2021, 93 (04) :1880-1888
[7]   Three-dimensional plasma micro-nanotextured cyclo-olefin-polymer surfaces for biomolecule immobilization and environmentally stable superhydrophobic and superoleophobic behavior [J].
Ellinas, Kosmas ;
Tsougeni, Katerina ;
Petrou, Panagiota S. ;
Boulousis, George ;
Tsoukleris, Dimitris ;
Pavlatou, Evangelia ;
Tserepi, Angeliki ;
Kakabakos, Sotirios E. ;
Gogolides, Evangelos .
CHEMICAL ENGINEERING JOURNAL, 2016, 300 :394-403
[8]   Microfluidic Devices for Heavy Metal Ions Detection: A Review [J].
Filippidou, Myrto-Kyriaki ;
Chatzandroulis, Stavros .
MICROMACHINES, 2023, 14 (08)
[9]   Remotely tunable microfluidic platform driven by nanomaterial-mediated on-demand photothermal pumping [J].
Fu, Guanglei ;
Zhou, Wan ;
Li, XiuJun .
LAB ON A CHIP, 2020, 20 (12) :2218-2227
[10]   Rapid prototyping of microfluidic chips enabling controlled biotechnology applications in microspace [J].
Garmasukis, Rokas ;
Hackl, Claudia ;
Charvat, Ales ;
Mayr, Stefan G. ;
Abel, Bernd .
CURRENT OPINION IN BIOTECHNOLOGY, 2023, 81