Incorporation of AIS data-based machine learning into unsupervised route planning for maritime autonomous surface ships

被引:65
作者
Li, Huanhuan [1 ]
Yang, Zaili [1 ]
机构
[1] Liverpool John Moores Univ, Liverpool Logist Offshore & Marine Res Inst, Liverpool, England
基金
欧洲研究理事会;
关键词
Maritime Autonomous Surface Ships (MASS); Feature measurement; Route planning; Pattern extraction; Maritime safety; COLLISION-AVOIDANCE; TIME-SERIES; BIG DATA; VESSEL; PATH; IMPLEMENTATION; TRAJECTORIES; TRACKING; DISTANCE; NETWORK;
D O I
10.1016/j.tre.2023.103171
中图分类号
F [经济];
学科分类号
02 ;
摘要
Maritime Autonomous Surface Ships (MASS) are deemed as the future of maritime transport. Although showing attractiveness in terms of the solutions to emerging challenges such as carbon emission and insufficient labor caused by black swan events such as COVID-19, the applications of MASS have revealed problems in practice, among which MASS navigation safety presents a prioritized concern. To ensure safety, rational route planning for MASS is evident as the most critical step to avoiding any relevant collision accidents. This paper aims to develop a holistic framework for the unsupervised route planning of MASS using machine learning methods based on Automatic Identification System (AIS) data, including the coherent steps of new feature measurement, pattern extraction, and route planning algorithms. Historical AIS data from manned ships are trained to extract and generate movement patterns. The route planning for MASS is derived from the movement patterns according to a dynamic optimization method and a feature extraction algorithm. Numerical experiments are constructed on real AIS data to demonstrate the effectiveness of the proposed method in solving the route planning for different types of MASS.
引用
收藏
页数:32
相关论文
共 110 条
[1]   The Human Element and Autonomous Ships [J].
Ahvenjarvi, S. .
TRANSNAV-INTERNATIONAL JOURNAL ON MARINE NAVIGATION AND SAFETY OF SEA TRANSPORTATION, 2016, 10 (03) :517-521
[2]   Towards Shipping 4.0. A preliminary gap analysis [J].
Aiello, Giuseppe ;
Giallanza, Antonio ;
Mascarella, Giuseppe .
INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING (ISM 2019), 2020, 42 :24-29
[3]   COMPUTING THE FRECHET DISTANCE BETWEEN 2 POLYGONAL CURVES [J].
ALT, H ;
GODAU, M .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1995, 5 (1-2) :75-91
[4]  
[Anonymous], IMO RES A 89321 GUID
[5]  
[Anonymous], CONV INT REG PREV CO
[6]  
[Anonymous], 1983, IMO RES A 52813 REC
[7]   Evaluating authorship distance methods using the positive Silhouette coefficient [J].
Ayton, Robert L. ;
Watters, Paul ;
Dazeley, Richard .
NATURAL LANGUAGE ENGINEERING, 2013, 19 (04) :517-535
[8]  
Berndt DonaldJ., 1994, KDD WORKSHOP, P359
[9]   What is maritime security? [J].
Bueger, Christian .
MARINE POLICY, 2015, 53 :159-164
[10]  
Burmeister H.C., 2014, P TRANSP RES AR PAR