Evaluation and comparison of different breast cancer prognosis scores based on gene expression data

被引:8
作者
Chowdhury, Avirup [1 ,2 ]
Pharoah, Paul D. [1 ]
Rueda, Oscar M. [2 ]
机构
[1] Univ Cambridge, Ctr Canc Genet Epidemiol, Cambridge, England
[2] Univ Cambridge, MRC Biostat Unit, East Forvie Bldg,Forvie Site,Robinson Way,Cambridg, Cambridge CB2 0SR, England
基金
英国科研创新办公室;
关键词
PREDICT; Breast cancer; Prognosis; Genomic score; Chemotherapy; Calibration; Discrimination; Reclassification; DISTANT RECURRENCE; R/BIOCONDUCTOR PACKAGE; ENDOCRINE THERAPY; PAM50; RISK; PERFORMANCE; PREDICTOR;
D O I
10.1186/s13058-023-01612-9
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundBreast cancer is one of the three most common cancers worldwide and is the most common malignancy in women. Treatment approaches for breast cancer are diverse and varied. Clinicians must balance risks and benefits when deciding treatments, and models have been developed to support this decision-making. Genomic risk scores (GRSs) may offer greater clinical value than standard clinicopathological models, but there is limited evidence as to whether these models perform better than the current clinical standard of care.MethodsPREDICT and GRSs were adapted using data from the original papers. Univariable Cox proportional hazards models were produced with breast cancer-specific survival (BCSS) as the outcome. Independent predictors of BCSS were used to build multivariable models with PREDICT. Signatures which provided independent prognostic information in multivariable models were incorporated into the PREDICT algorithm and assessed for calibration, discrimination and reclassification.ResultsEndoPredict, MammaPrint and Prosigna demonstrated prognostic power independent of PREDICT in multivariable models for ER-positive patients; no score predicted BCSS in ER-negative patients. Incorporating these models into PREDICT had only a modest impact upon calibration (with absolute improvements of 0.2-0.8%), discrimination (with no statistically significant c-index improvements) and reclassification (with 4-10% of patients being reclassified).ConclusionAddition of GRSs to PREDICT had limited impact on model fit or treatment received. This analysis does not support widespread adoption of current GRSs based on our implementations of commercial products.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Prognostic value of automated KI67 scoring in breast cancer: a centralised evaluation of 8088 patients from 10 study groups [J].
Abubakar, Mustapha ;
Orr, Nick ;
Daley, Frances ;
Coulson, Penny ;
Ali, H. Raza ;
Blows, Fiona ;
Benitez, Javier ;
Milne, Roger ;
Brenner, Herman ;
Stegmaier, Christa ;
Mannermaa, Arto ;
Chang-Claude, Jenny ;
Rudolph, Anja ;
Sinn, Peter ;
Couch, Fergus J. ;
Devilee, Peter ;
Tollenaar, Rob A. E. M. ;
Seynaeve, Caroline ;
Figueroa, Jonine ;
Sherman, Mark E. ;
Lissowska, Jolanta ;
Hewitt, Stephen ;
Eccles, Diana ;
Hooning, Maartje J. ;
Hollestelle, Antoinette ;
Martens, John W. M. ;
van Deurzen, Carolien H. M. ;
Bolla, Manjeet K. ;
Wang, Qin ;
Jones, Michael ;
Schoemaker, Minouk ;
Wesseling, Jelle ;
van Leeuwen, Flora E. ;
Van 't Veer, Laura ;
Easton, Douglas ;
Swerdlow, Anthony J. ;
Dowsett, Mitch ;
Pharoah, Paul D. ;
Schmidt, Marjanka K. ;
Garcia-Closas, Montserrat .
BREAST CANCER RESEARCH, 2016, 18
[2]  
American Joint Committee on Cancer, 2017, AJCC CANC STAGING MA
[3]   A European, Observational Study of Endocrine Therapy Administration in Patients With an Initial Diagnosis of Hormone Receptor-Positive Advanced Breast Cancer [J].
Bastiaannet, Esther ;
Charman, Jackie ;
Johannesen, Tom Borge ;
Schrodi, Simone ;
Siesling, Sabine ;
van Eycken, Liesbet ;
Walsh, Paul M. ;
Audisio, Riccardo A. ;
Boelens, Petra G. ;
Rubio, Isabel T. ;
Jones, Nick ;
Lewis, Jan ;
van de Velde, Cornelis J. H. .
CLINICAL BREAST CANCER, 2018, 18 (04) :E613-E619
[4]  
Beumer IJ, 2016, BIOMARK INSIGHTS, V11, P139, DOI [10.4137/bmi.s38435, 10.4137/BMIMI.S38435]
[5]   Comparison of EndoPredict and EPclin With Oncotype DX Recurrence Score for Prediction of Risk of Distant Recurrence After Endocrine Therapy [J].
Buus, Richard ;
Sestak, Ivana ;
Kronenwett, Ralf ;
Denkert, Carsten ;
Dubsky, Peter ;
Krappmann, Kristin ;
Scheer, Marsel ;
Petry, Christoph ;
Cuzick, Jack ;
Dowsett, Mitch .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2016, 108 (11)
[6]   An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation [J].
Candido dos Reis, Francisco J. ;
Wishart, Gordon C. ;
Dicks, Ed M. ;
Greenberg, David ;
Rashbass, Jem ;
Schmidt, Marjanka K. ;
van den Broek, Alexandra J. ;
Ellis, Ian O. ;
Green, Andrew ;
Rakha, Emad ;
Maishman, Tom ;
Eccles, Diana M. ;
Pharoah, Paul D. P. .
BREAST CANCER RESEARCH, 2017, 19
[7]   Clinical application and utility of genomic assays in early-stage breast cancer: key lessons learned to date [J].
Chia, S. K. L. .
CURRENT ONCOLOGY, 2018, 25 :S125-S130
[8]   Use and misuse of the receiver operating characteristic curve in risk prediction [J].
Cook, Nancy R. .
CIRCULATION, 2007, 115 (07) :928-935
[9]   The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups [J].
Curtis, Christina ;
Shah, Sohrab P. ;
Chin, Suet-Feung ;
Turashvili, Gulisa ;
Rueda, Oscar M. ;
Dunning, Mark J. ;
Speed, Doug ;
Lynch, Andy G. ;
Samarajiwa, Shamith ;
Yuan, Yinyin ;
Graef, Stefan ;
Ha, Gavin ;
Haffari, Gholamreza ;
Bashashati, Ali ;
Russell, Roslin ;
McKinney, Steven ;
Langerod, Anita ;
Green, Andrew ;
Provenzano, Elena ;
Wishart, Gordon ;
Pinder, Sarah ;
Watson, Peter ;
Markowetz, Florian ;
Murphy, Leigh ;
Ellis, Ian ;
Purushotham, Arnie ;
Borresen-Dale, Anne-Lise ;
Brenton, James D. ;
Tavare, Simon ;
Caldas, Carlos ;
Aparicio, Samuel .
NATURE, 2012, 486 (7403) :346-352
[10]   Gene expression profiling to predict the risk of locoregional recurrence in breast cancer: a pooled analysis [J].
Drukker, C. A. ;
Elias, S. G. ;
Nijenhuis, M. V. ;
Wesseling, J. ;
Bartelink, H. ;
Elkhuizen, P. ;
Fowble, B. ;
Whitworth, P. W. ;
Patel, R. R. ;
de Snoo, F. A. ;
van 't Veer, L. J. ;
Beitsch, P. D. ;
Rutgers, E. J. Th. .
BREAST CANCER RESEARCH AND TREATMENT, 2014, 148 (03) :599-613