On the low Mach number limit for 2D Navier-Stokes-Korteweg systems

被引:3
作者
Hientzsch, Lars Eric [1 ]
机构
[1] Univ Bielefeld, Fak Math, Postfach 100131, D-33501 Bielefeld, Germany
来源
MATHEMATICS IN ENGINEERING | 2023年 / 5卷 / 02期
关键词
Navier-Stokes-Korteweg equation; incompressible Navier-Stokes equation; capillarity; quantum fluids; low Mach number limit; acoustic waves; Strichartz estimates; energy estimates; BD-entropy estimates; ENERGY WEAK SOLUTIONS; INCOMPRESSIBLE LIMIT; GLOBAL EXISTENCE; QUANTUM; FLUID; EQUATIONS; SPACE; DERIVATION; SCATTERING; MODELS;
D O I
10.3934/mine.2023023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper addresses the low Mach number limit for two-dimensional Navier-Stokes- Korteweg systems. The primary purpose is to investigate the relevance of the capillarity tensor for the analysis. For the sake of a concise exposition, our considerations focus on the case of the quantum Navier-Stokes (QNS) equations. An outline for a subsequent generalization to general viscosity and capillarity tensors is provided. Our main result proves the convergence of finite energy weak solutions of QNS to the unique Leray-Hopf weak solutions of the incompressible Navier-Stokes equations, for general initial data without additional smallness or regularity assumptions. We rely on the compactness properties stemming from energy and BD-entropy estimates. Strong convergence of acoustic waves is proven by means of refined Strichartz estimates that take into account the alteration of the dispersion relation due to the capillarity tensor. For both steps, the presence of a suitable capillarity tensor is pivotal.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 57 条
[1]  
Adams R. A., 2003, Sobolev spaces
[2]   A MINICOURSE ON THE LOW MACH NUMBER LIMIT [J].
Alazard, Thomas .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (03) :365-404
[3]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[4]  
Antonelli P., 2022, ARXIV201113435
[5]  
Antonelli P., 2020, HYPERBOLIC PROBLEMS, P256
[6]  
Antonelli P., 2018, RES I MATH SCI, V2070, P107
[7]   Global existence of weak solutions to the Navier-Stokes-Korteweg equations [J].
Antonelli, Paolo ;
Spirito, Stefano .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (01) :171-200
[8]   Global existence of finite energy weak solutions to the Quantum Navier-Stokes equations with non-trivial far-field behavior [J].
Antonelli, Paolo ;
Hientzsch, Lars Eric ;
Spirito, Stefano .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 290 :147-177
[9]   ON THE LOW MACH NUMBER LIMIT FOR QUANTUM NAVIER-STOKES EQUATIONS [J].
Antonelli, Paolo ;
Hientzsch, Lars Eric ;
Marcati, Pierangelo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (06) :6105-6139
[10]   On the compactness of weak solutions to the Navier-Stokes-Korteweg equations for capillary fluids [J].
Antonelli, Paolo ;
Spirito, Stefano .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 :110-124