Efficient energy harvesting enabled by large-area piezoelectric PVDF-based composite film enhanced by carbon nanotubes

被引:7
作者
Yang, Xinyue [1 ,2 ]
Li, Yuanhui [1 ,2 ]
Guo, Huiling [1 ,2 ]
Xiao, Shibing [1 ,2 ,3 ]
Yuan, Chongxiao [1 ,2 ,3 ]
Zhang, Chao [1 ,2 ,3 ,4 ]
Sun, Huajun [1 ,2 ,3 ]
机构
[1] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
[3] Adv Ceram Inst Zibo New & High Tech Ind Dev Zone, Zibo 255000, Peoples R China
[4] Zibo Vocat Inst, Sch Artificial Intelligence & Big Data, Zibo 255000, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy harvesting; Piezoelectric composite films; Melt extrusion casting process; Carbon nanotubes; BATIO3; NANOPARTICLES; SILVER NANOWIRES; PERFORMANCE; NANOGENERATORS; FABRICATION; BEHAVIOR; MATRIX;
D O I
10.1016/j.ceramint.2024.01.122
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Considerable attention has been drawn to the use of flexible piezoelectric energy harvesting devices for powering smart wearable technology. Herein, we employed a melt extrusion casting process to prepare large-area PVDFbased piezoelectric composite films and achieved continuous production. The films were prepared by adding 15 wt% lead zirconate titanate powder modified with a titanium coupling agent (PZT@UP15) and different content of carbon nanotubes (CNTs) exhibiting high conductivity into the PVDF matrix. The addition of CNTs in moderate amounts significantly enhanced the mechanical, dielectric, and piezoelectric properties of the composite films. Remarkably, the composite film containing 0.06 wt% CNTs achieved a d33 value of 28 pC/N, generated an open circuit voltage of 16.85 V, and a maximum power density of 0.46 mu W/cm2 in the bending-releasing mode. Furthermore, the film exhibited relatively stable output performance even after 1500 cycles. The enhanced performances of the piezoelectric composite films can be attributed to the factors that the CNTs can effectively promote PVDF polarization by inducing dipole alignment and building an internal electric field, and further improve the piezoelectric performance and the electrostrictive performance. This work shows that the prepared piezoelectric composite film holds great potential as an energy harvesting device to provide power for wearable electronic devices.
引用
收藏
页码:12185 / 12194
页数:10
相关论文
共 54 条
[1]   Electrical and Piezoelectric Behavior of Polyamide/PZT/CNT Multifunctional Nanocomposites [J].
Carponcin, Delphine ;
Dantras, Eric ;
Dandurand, Jany ;
Aridon, Gwenaelle ;
Levallois, Franck ;
Cadiergues, Laurent ;
Lacabanne, Colette .
ADVANCED ENGINEERING MATERIALS, 2014, 16 (08) :1018-1025
[2]   Modulus-Modulated All-Organic Core-Shell Nanofiber with Remarkable Piezoelectricity for Energy Harvesting and Condition Monitoring [J].
Chai, Bin ;
Shi, Kunming ;
Wang, Yalin ;
Liu, Yijie ;
Liu, Fei ;
Jiang, Pingkai ;
Sheng, Gehao ;
Wang, Shaojing ;
Xu, Peng ;
Xu, Xiangyi ;
Huang, Xingyi .
NANO LETTERS, 2023, 23 (05) :1810-1819
[3]   Digital light processing 3D printing of barium titanate/1,6-ethylene glycol diacrylate/polyethylene glycol (400) diacrylate nanocomposites [J].
Chen, Cheng ;
Wang, Xi ;
Wang, Yan ;
Gu, Hongxi ;
Zhao, Weixing ;
Zhang, Wenxiong ;
Sewvandi, Galhenage Asha ;
Wang, Bo ;
Ma, Chunrui ;
Liu, Ming ;
Hu, Dengwei .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2023, 6 (01)
[4]   Piezoelectric Nanogenerator Based on In Situ Growth All-Inorganic CsPbBr3 Perovskite Nanocrystals in PVDF Fibers with Long-Term Stability [J].
Chen, Huiying ;
Zhou, Linlin ;
Fang, Zhi ;
Wang, Shuize ;
Yang, Tao ;
Zhu, Laipan ;
Hou, Xinmei ;
Wang, Hailong ;
Wang, Zhong Lin .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (19)
[5]   High-performance and high-thermally stable PSN-PZT piezoelectric ceramics achieved by high-temperature poling [J].
Chen, Zhengran ;
Liang, Ruihong ;
Zhang, Chi ;
Zhou, Zhiyong ;
Li, Yuchen ;
Liu, Zhenming ;
Dong, Xianlin .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 116 :238-245
[6]   Highly enhanced electromechanical properties of PVDF-TrFE/SWCNT nanocomposites using an efficient polymer compatibilizer [J].
Cho, Kie Yong ;
Park, Hyunchul ;
Kim, Hyun-Ji ;
Do, Xuan Huy ;
Koo, Chong Min ;
Hwang, Seung Sang ;
Yoon, Ho Gyu ;
Baek, Kyung-Youl .
COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 157 :21-29
[7]   Electrical and mechanical behavior of PMN-PT/CNT based polymer composite film for energy harvesting [J].
Das, Satyabati ;
Biswal, Asutya Kumar ;
Parida, Kalpana ;
Choudhary, R. N. P. ;
Roy, Amritendu .
APPLIED SURFACE SCIENCE, 2018, 428 :356-363
[8]   Porous, multi-layered piezoelectric composites based on highly oriented PZT/PVDF electrospinning fibers for high-performance piezoelectric nanogenerators [J].
Du, Xiangxin ;
Zhou, Zheng ;
Zhang, Zhao ;
Yao, Liqin ;
Zhang, Qilong ;
Yang, Hui .
JOURNAL OF ADVANCED CERAMICS, 2022, 11 (02) :331-344
[9]   Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting [J].
Dudem, Bhaskar ;
Kim, Dong Hyun ;
Bharat, L. Krishna ;
Yu, Jae Su .
APPLIED ENERGY, 2018, 230 :865-874
[10]   Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode [J].
Gu, Long ;
Liu, Jinmei ;
Cui, Nuanyang ;
Xu, Qi ;
Du, Tao ;
Zhang, Lu ;
Wang, Zheng ;
Long, Changbai ;
Qin, Yong .
NATURE COMMUNICATIONS, 2020, 11 (01)